Химическая картина мира. Этапы развития

МИНИСТЕРСТВО ВНУТРЕННИХ ДЕЛ РОССИЙСКОЙ ФЕДЕРАЦИИ

БЕЛГОРОДСКИЙ ЮРИДИЧЕСКИЙ ИНСТИТУТ

Кафедра гуманитарных и социально-экономических дисциплин

Дисциплина: " Концепции современного естествознания "

РЕФЕРАТ

по теме № :

" Концепция единства структурных превращений вещества и

химическая картина мира "

Подготовил:

профессор кафедры ГиСЭД,

к.ф.н., доц.

Номерков А.Л.

Проверил:

Студент 534 группы

Малявкин Г.Н.

Белгород – 2008

Введение

С незапамятных времён человек, сталкиваясь с различными явлениями природы, накапливая сведения о них и об окружающих его предметах, всё чаще использовал их себе во благо. Человек, например, заметил, что под действием огня одни вещества исчезают, а другие изменяют свои свойства. Скажем, обожженная сырая глина вдруг приобретает прочность. Человек применил это в своей практике, и родилось гончарное дело. Или, к примеру, из руд научились выплавлять металлы, а, сплавляя эти металлы, - получать различные сплавы: так появилась металлургия.

Используя свои наблюдения и знания, человек научился создавать, а, создавая, - познавал. Иными словами, науки рождались и развивались параллельно с ремёслами и производствами.

Превращения веществ под действием огня были первыми химическими реакциями, осуществлёнными человеком. Так, костёр, по образному выражению, стал своего рода первой химической "лабораторией" человечества.

1. Химическая "технология" и химическое миропонимание (алхимия) цивилизации в ее первоначалах

Известно, что уже за несколько тысяч лет до нашей эры в Древнем Египте люди научились выплавлять и использовать для практических целей золото, медь, серебро, олово, свинец и ртуть. В стране священного Нила развивалось производство керамики и глазурей, стекла и фаянса. Использовали древние египтяне и различные краски: минеральные (охра, сурик, белила) и органические (индиго, пурпур, ализарин). Отсюда, можно полагать вслед за знаменитым французским химиком Мю Бертло, что и само название "химия" произошло от древнеегипетского слова "хемы": так называли людей, населяющих так называемые в Египте "чёрные земли", где были именно развиты указанные выше ремёсла.

Однако греческий алхимик Зосима (III-IV вв. н.э.) объяснял происхождения слова "химия" иначе: он понимал под химией искусство делать серебро и золото (в этом смысле химия есть искусство плавки металлов). Известны на этот счет и другие толкования данного понятия. Поэтому необходимо отметить в указанной связи, что до сих пор у учёных нет единого мнения на этот счёт.

Химические ремёсла были развиты в 4-2 тысячелетии до н. э. не только у египтян, но и в странах Междуречья на Ближнем Востоке (долины рек Тигра и Евфрата). В те времена народы, населявшие Междуречье, знали металлы (из свинца, например, отливали статуэтки, культовые фигурки), широко использовали минеральные и органические красители, умели изготовлять глазури, фаянс и т.д.

Учёные-философы Древней Греции (VII-V вв. до н. э.) пытались объяснить, каким образом осуществляются различные превращения, из чего и как произошли все вещества. Так возникло учение о началах, стихиях (от steheia - основа), или элементах (от латинского elementum - первооснова, первоначало), как их стали называть позже.

Фалес Милетский считал, что мир - это единое целое, а все, что происходит в природе, есть результат уплотнения или разряжения единой первоматерии, единого первоначала - воды. Анаксимен Милетский признавал первичной материей воздух, при охлаждении и сгущении которого образуется вода, а из неё затем при последующем уплотнении и охлаждении возникает земля. Философ Ксенофан учил, что первичными началами являются вода и земля: материя не уничтожается и не возникает, мир существует вечно.

В 544-483 гг. до н. э. в городе Эфесе жил знаменитый философ Гераклит, который считал, что все "телам" природы присуще вечное движение. Естественно, что первоматерией при этом он признавал самое подвижное и изменчивое начало - огонь. Мир, по мнению Гераклита, не создан ни богами, ни людьми, "был, есть и будет вечно живым огнём", который закономерно воспламеняется и так же закономерно угасает.

Другой древнегреческий философ, Эмпедокл, наблюдая горение дерева, отмечал, что сначала образуется дым, воздух, затем пламя (огонь) и, в конце концов, остаётся зола (земля). Если около пламени будет находится холодная поверхность, то на ней осаждаются пары воды. Таким образом, горение есть разложение горящего вещества на четыре элемента: воздух, огонь, воду и землю. На основании такого вывода Эмпедокл первый создал учение о четырёх началах ("корнях") природы: "Сначала выслушай, что четыре корня всего существующего - Огонь, и Вода, и Земля, и безграничная высь Эфира... Из них всё, что было, и всё то, что будет". Эти "начала" вечны и неизменны.

Анаксагор из города Клазомена в Малой Азии первым высказал предположение, что все вещества состоят из бесчисленного количества первичных начал материи – "семян вещей". Материи свойственны противоположные качества: свет и тьма, теплота и холод, сухость и влажность. Только совокупность этих качеств, взятая в различных соотношениях, обуславливает образования таких начал, как земля и эфир.

Здесь необходимо отметить, что тогда же, наряду с учением о "стихиях", развивались и другие представления о строении материи - атомистические.

Ярчайшей фигурой древней Греции и всего античного мира был Аристотель (384-322 гг. до н.э.). Он как и Эпмпедокл, признавал, что в мире существуют четыре основных "начала" – "стихии" (они же "элементы", иногда "принципы" или "первичная материя"). Под стихиями Аристотель понимал "предельные части", на которые разлагаются все тела. Эти части не делятся дальше и отличаются друг от друга "по виду". К стихиям он относил воду, землю, огонь и воздух; каждая из стихий бала носителем двух свойств из четырёх - влажности и сухости, тепла и холода: воздух теплый и влажный, огонь сухой и тёплый, земля сухая и холодная, вода холодная и влажная.

Помимо этих четырёх элементов Аристотель ввёл и пятый, который назвал "сущность". В средние века алхимики стали именовать этот элемент "квинтэссенцией" (от латинского quinta essentia – пятая сущность), "философским камнем", "эликсиром жизни", "великим магистерием", "красной тинктурой", "универсалом", "медикаментом". Таинственному пятому элементу приписывали сверхъестественные свойства.

Учения Аристотеля о взаимном превращении элементов и о пятой сущности легло впоследствии в основу представлений о так называемой "трансмутации", в том числе и о получении золота из неблагородных металлов. И первыми стали вводить учение Аристотеля о пятой сущности так называемые "алхимики".

Однако идеи трансмутации вовсе не связаны с Аристотелем, как "первоисточником" этой идеологии, а уходят в более давние времена.

В 321г. до н.э. в дельте Нила был заложен новый город – Александрия, названный так в честь завоевателя Александра Македонского. Имея выгодное географическое положение, город стал одним из крупнейших торговых и ремесленных центров. Там была основана первая в истории академия - специальное учреждение, где занимались различными исследованиями и обучали известным в то время наукам.

До завоевания Египта иноземцами египетские жрецы, знавшие многие химические операции (получение сплавов, амальгамирование, имитация драгоценных металлов, выделение красок и т.д.), держали их в глубочайшей тайне и передавали только избранным ученикам, а сами операции проводили в храмах, сопровождая их пышными мистическими церемониями. После падения этой страны многие тайны жрецов стали известны древнегреческим учёным, которые считали, что получаемые жрецами имитации драгоценных металлов и есть настоящие "превращения" одних веществ в другие, полностью соответствующие законам природы. Словом, в эллинистическом Египте произошло соединение натурфилософских представлений античных философов и традиционной обрядности жрецов - то, что впоследствии и было названо арабами "алхимией".

Это название вышеуказанных "превращений" возникло в силу определенных политических обстоятельств. Около 640 г. н. э. Египет захватили арабы, а уже в начале VIII в. их власть установилась на огромной территории - от Гибралтара до Индии. Научно-практические знания и культура, усвоенные арабами в покорённых странах (и особенно в Египте), к XII в. достигли Европы. В этом большую роль сыграла торговля между государствами арабского Востока и европейскими странами. Химические знания, пришедшие в Европу от арабов, и стали называть арабским словом «алхимия». Что же это были за знания?

Следует отметить, что зачатки именно алхимических взглядов встречались, вообще говоря, у многих народов. В I в.н. э. древнеримский врач и естествоиспытатель Диоскорид написал первую химическую энциклопедию, в которой были изложены способы приготовления известковой воды, медного купороса, белил и некоторых других веществ. В Китае алхимик Вей Паян (II в.) описывает рецепт получения "пилюль бессмертия". Ко Хун (281- 361) также даёт рецепты изготовления "пилюль долголетия"" и искусственного золота. Поиски таких рецептов были распространены и в эллинистическом Египте. От тех времён сохранилось два папируса, относящихся к III веку, - "Лейденский папирус X" и "Стокгольмский папирус". В первом содержится около ста рецептов имитации золота, а во втором, кроме того, описывается подделка жемчуга и крашение пурпуром.

Однако основателем собственно алхимии считают греческого алхимика Зосиму - автора многих научных сочинений, в том числе и алхимических ("Имут", где говорится о происхождении алхимии; "О хорошем качестве и составе вод", где описывается получение живительной воды).

Среди арабских алхимиков одним из виднейших был принц Калида ибн Казид (ок. 660-704), проведший большую часть жизни в Египте. Он приказал перевести на арабский язык все известные алхимические сочинения.

Но истинным «царём науки» арабы называли великого учёного Джабира ибн Гайяна (ок. 721-815), известного в Европе под именем Гебер. Знакомый с учениями древних, он стал последователем Аристотеля, взгляды которого на элементы-качества были переосмыслены арабами.

Гайян считал, что металлы состоят из двух основных частей (элементов): серы, являющейся носителем горючести и изменчивости, и ртути – "души" металлов, носителя металличности (блеска, твёрдости, плавкости), а основными химическими процессами являются горение и плавление. Самыми благородными металлами являются золото и серебро, в состав которых входят сера и ртуть в наичистейшим виде и в самой оптимальной пропорции. Разнообразие последних зависит от количественного соотношения серы и ртути и от примесей. Но в природе этот процесс соединения идёт очень медленно, и, чтобы ускорить его, надо добавить "медикамент" (особый препарат), тогда превращение займёт около 40 дней; если же использовать "эликсир", то весь процесс получения золота займёт всего 1 час!

Изучал Гайян и свойства, а также способы приготовления многих солей: купоросов, квасцов, селитры и др.; знал получение кислот: азотной, серной, уксусной; при проведении опытов прибегал к перегонке, обжигу, возгонке, кристаллизации. Он считал, что практика и опыты для алхимиков имеют первостепенную важность, без них успех невозможен. Труды Гайяна ("Книга семидесяти", "Книга ядов", "Сумма совершенств", "Книга о печах") изучались в течение многих веков.

Учеником прославленного Гебера считал себя крупнейший арабский алхимик Абу Бакр Мухаммед ибн Закарийа ар-Рази (865-925), автор "Книги тайн" и "Книги тайны тайн". Он первый провёл классификацию известных в то время веществ, разделив их на три класса: землистые (минеральные), растительные и животные.

Ар-Рази признавал трансмутацию неблагородных металлов в благородные, признавал элементы металлов - серу и ртуть, но, не ограничиваясь этим, ввёл дополнительный третий - элемент "соляной природы", являющийся носителем твёрдости и растворимости. Это учение о трёх элементах (сера, ртуть, соль) широко распространилось среди европейских алхимиков.

Восприняв представление античных атомистов, ар-Рази применил их к учению Аристотеля, считая, что вещества состоят из неделимых элементов-частиц (атомов, по-современному) и пустоту; сами элементы вечны, неделимы и имеют определённые размер. Свойства же веществ зависят от размеров атомов и расстояний между ними (пустот). Так, земля и вода состоят из атомов больших размеров, а пустоты в них меньше, и поэтому они движутся вниз; огонь и воздух, наоборот, движутся вверх, так как их атомы меньше, а пустоты в них больше.

Как и Гайян, ар-Рази считал, что целью алхимии должно быть познание свойств веществ, освоение всевозможных операций над ними, изготовление различных аппаратов для осуществления этих операций. В этой практической, а не отвлечённо-мистической направленности структурных преобразований вещества, как раз и выразилась специфика учения арабских алхимиков.

Идея превращения неблагородных металлов в благородные нашла много приверженцев и в Западной Европе. За толстыми стенами, в сырых подвалах, в уединённых кельях европейские алхимики пытаются "ускорить" процесс "совершенствования" металлов. Неблагородные металлы расплавляют, смешивают друг с другом, окрашивают, закапывают в землю, но… золото так и не получается!

Все больше и больше формируется мнение, что процесс получения золота "лабораторным" путем есть скорее всего процесс сверхъестественный? Над металлами начинают произносить заклинания, а на полу на полу и на стенах "лабораторий" изображают магические формулы Но и эти манипуляции не привели к положительному результату!

Но может быть, вся суть заключается именно в пятом элементе – "квинт- эссенции", получившем множество различных возвышенных и таинственных имён? Только он один мог бы превратить любой металл в золото, дать человеку вечную жизнь и молодость. И теперь усилия алхимиков сосредотачиваются на получении философского камня. Были созданы сотни зашифрованных рецептов, большинство из которых до сих пор не удалось разгадать, не говоря уже об их экспериментальной проверке.

Шли годы... Алхимики продолжали свои поиски. И одним из крупнейших алхимиков Средневековья был Альберт фон Больштедт (1193-1280). Обладая поразительной работоспособностью, жаждой знаний и будучи прекрасным оратором, он стал знаменитым среди своих современников, которые называли его "универсальным доктором", Альбертом Великим. Отказавшись в 1265г. от епископства, фон Больштедт удалился в монастырь и посвятил оставшиеся годы жизни науке. Им было написано огромное число трактатов по различным отраслям знаний, в том числе и по алхимии – "Пять книг о металлах и минералах", "Книга об алхимии".

Альберт Великий полагал, что трансмутация металлов зависит от их вида и плотности. Изменение же свойств металлов происходит под действием мышьяка (окрашивает металлы в жёлтый цвет) и воды (сжимаясь и уплотняясь, она увеличивает плотность металлов). Описывая проведение алхимических операций, он приводит ряд правил, которым надо следовать в работе: хранить молчание, скрываться от глаз людских, соблюдать время и т.д.

В XVI в. особой популярностью пользовались сочинения Василия Валентина ("могущественный царь") – "О тайной философии", "О великом камне древних мудрецов", "Триумфальная колесница антимония". Правда, все попытки установить подлинное имя этого автора так и не удались: видимо, под этим псевдонимом писал неизвестный алхимик и, возможно, не один.

Признавая трансмутацию металлов и начала алхимиков, Василий Валентин особо подчеркивал, что алхимические элементы металлов не имеют ничего общего с реальными элементами того же названия: "Все, писавшие о семенах металлов, согласны в том, что сера представляет мужское семя металлов, а ртуть - женское семя, но это нужно понимать разумом и не принимать за семена металлов обыкновенную серу и обыкновенную ртуть, потому что обыкновенная ртуть, будучи сама металлом, не может быть семенем металлов". Также не могут быть "семенем" металлов обыкновенная сера и соль. Последняя, по его мнению, характеризует способность металлов растворяться в кислотах.

Здесь надо подчеркнуть, что в алхимических изысканиях Василия Валентина впервые в истории развития алхимических представлений проявляется необходимость значительной практической направленности этих знаний помимо "стратегических" целей алхимии. Так, он первым упоминает о соляной кислоте ("соляном спирте"), предлагает способ получения её из поваренной соли и железного купороса, описывает её действие на металлы и некоторые оксиды. Сурьме и её соединениям посвящено сочинение "Триумфальная колесница антимония".

Вместе с тем следует отметить, что далеко не все средневековые учёные принимали основные теоретические рассуждения и положения алхимиков. И одним из таких учёных был Авиценна. Этим латинским именем называли знаменитого арабского философа и врача абу Али ал-Хусейна ибн Сину (980-1037), таджика по национальности, родившегося недалеко от Бухары. Он создал около 300 трудов, и некоторые из них ("Медицинский канон", "Книга исцеления", "Книга знаний") пользуются заслуженной известностью и в настоящие время. Им описана почти тысяча различных веществ, среди которых были и металлы. Авиценна вовсе не отрицал важностьсеры и ртути для химических превращений, но отрицал возможность взаимного превращения металлов одного в другой, поскольку полагал, что для этого нет реальных путей.

Не верил в трансмутацию и величайший итальянский учёный и художник Леонардо да Винчи (1452-1519), поставивший своей целью "постичь происхождение многочисленных созданий природы". Он опирался на эксперимент, который он считал посредником "между искусной природой и родом человеческим" и который "должно производить многократно, чтобы какое-нибудь случайное обстоятельство не повлияло бы на его результаты".

Леонардо да Винчи, конечно, признавал практическую алхимию, которая могла приносить пользу, но резко выступал против тех алхимиков, которые ставили своей целью получение золота. Леонардо считал, что человек не может создавать простые вещества, а тем более превращать их одно в другое, да и ртуть не может быть общим "семенем" металлов, поскольку "природа разнообразит семена соответственно различию вещей".

Но эпоха алхимии не прошла даром. В поисках условий для осуществления таинственной трансмутации алхимики разработали такие важные методы очистки веществ, как фильтрация, возгонка, дистилляция, кристаллизация. Для проведения экспериментов они создали специальные аппараты водяную баню, перегонный куб, реторты, печи для нагревания колб. Алхимиками были открыты серная, соляная и азотная кислоты, многие соли, этиловый спирт, изучены многие реакции (взаимодействие металлов с серой, обжиг, окисление и т.д.).

И тем не менее, чтобы превратить алхимические учения в положения действительно научной химии, необходимо было "очистить" их от мистических наслоений, поставить на подлинную экспериментальную основу, детально исследовать состав веществ. Начало этому сложному и длительному процессу положили так называемые "иатрохимики" (от греч. iatros – "врач") и представители так называемой "технической химии".

Развитие иатрохимии, металлургии, красильного дела, изготовление глазурей и т.д., усовершенствование химической аппаратуры - всё это способствовало тому, что эксперимент постепенно становился основным критерием истинности теоретических положений. Практика же, в свою очередь, не могла развиваться без теоретических представлений, которые должны были не только объяснить, но и предсказывать свойства веществ и условия проведения химических процессов. Учёные отказались от традиционных "начал" алхимиков и обратились к материалистическим представлениям древних о строении материи.

2. От алхимии - к научной химии: путь действительной науки

о превращениях вещества

Новому пониманию предмета химического познания способствовало возрождение античного атомизма. Здесь важную роль сыграли труды французского мыслителя П.Гассенди. Он не только воскресил атомистическую теорию, но, по словам Дж. Бернала, превратил её "в учение, куда вошло все, то новое в физике, что было найдено в эпоху Возрождения". Для обнаружения частиц, не видимых простым глазом, Гассенди использовал энгиоскоп (микроскоп), и из этого он сделал вывод, что если можно обнаружить столь мелкие частицы, то могут существовать и совсем мельчайшие, которые удастся увидеть впоследствии.

Гассенди считал, что Бог создал определённое число атомов, отличающихся друг от друга формой, величиной и весом и всё в мире состоит из них. Как из кирпича, брёвен и досок можно построить огромное число разнообразных зданий, так и из нескольких десятков видов атомов природа создаёт великое множество тел. Соединяясь, атомы дают более крупные образования – "молекулы". Последние в свою очередь, объединяясь друг с другом, становятся более крупными и "доступными для ощущения". Тем самым Гассенди первым ввёл в химию понятие "молекула" (от лат. moles и cula - "масса" в уменьшительном значении)

И вместе с тем П.Гассенди разделял заблуждения науки своего времени. Так, он признавал божественное происхождение атомов, признавал, что существуют особые атомы запаха, вкуса, тепла и холода.

Развитию корпускулярной теории способствовал и великий английский учёный Исаак Ньютон (1643-1727), занимавшийся также и вопросами химии. Он имел хорошо оборудованную химическую лабораторию, среди его трудов есть, например, сочинение "О природе кислот" (1710). Ньютон считал, что корпускулы созданы Богом, что они неделимы, тверды и неуничтожимы. Соединение корпускул происходит за счёт притяжения, а не за счёт крючков, зазубрин и т.д. Такое притяжение и определяет "химическое действие", а распад существующих веществ на первичные частицы и образование из них других сочетаний обусловливают появления новых веществ.

Корпускулярное учение нашло свое завершение также в трудах знаменитого английского учёного Роберта Бойля. Ему от отца досталось в наследство два имения, в одном из которых он и поселился. Там Бойль собрал богатую библиотеку и оборудовал прекрасную лабораторию, где работал со своими помощниками. Молодой учёный разработал основы анализа (от analisis - разложение) "мокрым путём", т.е. анализ в растворах. Он ввёл индикаторы (настой лакмуса, цветов фиалок, а также лакмусовые бумажки) для распознания кислот и щелочей, соляную кислоту и её соли с помощью нитрата серебра, соли серной кислоты - с помощью извести и т.д. Эти приёмы используются в химии и сейчас.

Под влиянием работ Торричелли по изучению атмосферного давления Бойль занялся исследованием свойств воздуха. Он брал трубки U-образной формы с разной длиной колен. Короткое было запаяно, а длинное открыто. Заливая в последнее ртуть, Бойль "запирал" короткое колено. Если изменять теперь количество ртути в длинном колене, то будет изменяться и объём воздуха в коротком. Так была установлена закономерность: объём газа обратно пропорционален его давлению (1662). Позднее эту закономерность наблюдал французский учёный Э. Мариотт. Сейчас этот газовый закон именуется законом Бойля- Мариотта.

А за год до открытия газового закона Бойль опубликовал книгу "Химик-скептик", в которой изложил свои взгляды и полагал химию самостоятельной наукой, а не подспорьем алхимии и медицины. Все тела, пишет он, состоят из движущихся частиц, обладающих разной величиной и формой, а элементами, подчёркивает Бойль, не могут быть ни "начала" Аристотеля, ни "начала" алхимиков. Такими первоосновами могут быть тольк "определённые, первоначальные и простые, вполне несмешанные тела, которые не составлены друг из друга, но представляют собой те составные части, из которых составлены все так называемые смешанные тела и которые они, в конце концов, могут быть разложены".

Таким образом, элементы, по Бойлю, это вещества, которые нельзя разложить (т.е. простые вещества), они состоят из однородных корпускул. Таковы золото, серебро, олово, свинец.

Другие, например киноварь, разлагающуюся на ртуть и серу, он относил к сложным веществам. В свою очередь, серу и ртуть, которые не удалось разложить, следовало отнести к элементам. А сколько в природе элементов, то на этот трудный вопрос ответить мог дать только опыт. Нельзя так же утверждать, считал Бойль, что известные в то время простые вещества обязательно должны быть элементами - возможно, со временем, и они будут разложены (что и произошло с водой и "землями"- оксидами щелочноземельных металлов).

Ученому удалось в корпускулярной теории строения веществ объединить два подхода - учение об элементах и атомистические представления. Именно "Бойль делает из химии науку", - писал в этой связи Ф. Энгельс.

3. Революция в химии и атомно-молекулярное учение

как концептуальное основание современной химии

Как история человеческой цивилизации началась с "приручения" человеком огня, так и действительная история химии началась с рассмотрения проблемы горения - центральная проблема химии XVIII в. Вопрос состоял в следующим: что случается с горючими веществами, когда они сгорают воздухе?

Для объяснения процессов горения И. Бехером и его учеником Г.Э. Шталем была предложена так называемая теория флогистона. Под флогистон здесь понималась некоторая невесомая субстанция, которую содержат все горючие тела и которую они утрачивают при горении. Тела, содержащие большое количество флогистона, горят хорошо, тела же, которые не загораются, являются дефлогистированными. Эта теория позволяла объяснить многие химические процессы и предсказывать новые химические явления. В течении почти всего XVIII в. она прочно удерживала свои позиции, пока Лавуазье в конце XVIII в. не разработал кислородную теорию горения.

Разрабатывая свою теорию горения, Лавуазье отмечал, что при горении "постоянно наблюдается четыре явления": выделяются свет и тепло; горение осуществляется только в "чистом воздухе" (кислороде); все вещества увеличиваются настолько, насколько уменьшается вес воздуха; при горении неметаллов образуются кислоты (кислотные оксиды), а при обжиге металлов - металлические извести (оксиды металлов).

Лавуазье использовал опыт Шееле и Пристли, благодаря чему ему удалось ясно и доступно объяснить процесс горения. Было доказано, что "флогистон Шталя – лишь воображаемое вещество", а "явления горения и обжига объясняются гораздо проще и легче без флогистона, чем с его помощью".

Проводя различные опыты с азотной, серной и фосфорной кислотами, Лавуазье пришёл к выводу, что "кислоты отличаются одна от другой лишь основанием, соединенный с воздухом". Другими словами, "чистый воздух" обусловливает кислые свойства этих веществ и поэтому учёный назвал его кислородом (oksigenium от orsus - кислый и gennao - рождаю). После того как был установлен состав воды, Лавуазье окончательно убедился в исключительной роли кислорода.

В "Начальном курсе химии" (1789) Лавуазье, опираясь на новые теории и применяя разработанную им (совместно с другими учеными) номенклатуру, систематизировал накопленные к тому времени химические знания и изложил свою кислородную теорию горения.

Вначале Лавуазье даёт описание различных агрегатных состояний веществ. С его точки зрения, в твёрдом веществе молекулы удерживаются друг около друга силами притяжения, которые по величине больше сил отталкивания. В жидкости молекулы находятся на таком расстоянии друг от друга, когда силы притяжения и отталкивания равны, а атмосферное давление препятствует превращению жидкости в газ. В газообразном же состоянии преобладают силы отталкивания.

Лавуазье даёт определение элемента и приводит таблицу и классификацию простых веществ. Он отмечает, что представление о трёх или четырёх элементах, из которых, якобы, состоят все тела природы, перешедшего к нам от греческих философов, является неверным. Сам же Лавуазье под элементами понимал вещества, которые не разлагаются "никаким образом". Все простые вещества были им разделены на четыре группы: 1) вещества, относящиеся к трём царствам природы (минералы, растения, животные) - свет, теплород, кислород, азот, водород; 2) неметаллические вещества, окисляющиеся и дающие кислоты, - сера, фосфор, углерод, радикалы муриевый (хлор), плавиковый (фтор), и борный (бор); 3) металлические вещества, окисляющиеся и дающие кислоты, - сурьма, серебро, мышьяк, висмут, кобальт, медь, железо, марганец, ртуть, молибден, никель, золото, платина, свинец, вольфрам, цинк; 4) солеобразующие землистые вещества: известь, магнезия, барит, глинозем, кремнезём.

Таким образом, Лавуазье осуществил научную революцию в химии: он превратил химию из совокупности множества не связанных друг с другом рецептов, подлежавших изучению один за одним, в общую теорию, основываясь на которой можно было не только объяснить все известные явления, но и предсказывать новые.

Принципиальный шаг в развитии научной химии был сделан Дж.Дальтоном, ткачом и школьным учителем из Манчестера. Уже первые научные сообщения молодого учителя привлекли внимание некоторых физиков и химиков, среди которых у Дальтона появились единомышленники.

В 1793 г. вышла в свет научная работа Дальтона "Метеорологические наблюдения и опыты". Анализируя результаты своих метеорологических наблюдений, Дальтон пришёл к выводу, что причиной испарения воды является теплота, а сам процесс испарения есть переход частичек воды из жидкого состояния в газообразное. Это был первый шаг на пути к созданию системы химической атомистики.

В 1801г. Дальтон установил закон парциальных давлений газов: давление смеси газов, не взаимодействующих друг с другом, равно сумме их парциальных давлений (Первый закон Дальтона).

Два года спустя, продолжая опыты, английский учёный обнаружил, что растворимость в жидкости каждого газа из смеси при постоянной температуре прямо пропорциональна его парциальному давлению над жидкостью и не зависит от общего давления смеси и от наличия в смеси других газов. Каждый газ растворяется, таким образом, как если бы он один занимал данный объём (Второй закон Дальтона).

Пытаясь определить "число простых элементарных частиц", образующих сложную частицу, Дальтон рассуждал, что если при взаимодействии двух веществ получается одно соединение, то оно бинарно; если же образуются два соединения, то одно бинарное, а другое тройное, т.е. состоят соответственно из двух и из трёх атомов, и т.д.

Применяя эти правила, Дальтон приходит к заключению, что вода - бинарное соединение водорода и кислорода, вес которых относятся примерно как 1:7. Дальтон считал, что молекула воды состоит из одного атома водорода и одного атома кислорода, т.е. формула её НО. По данным же Гей-Люссака и А.Гумбольдта (1805), вода содержит 12,6% водорода и 87,4% кислорода, а так как Дальтон принял атомный вес водорода за единицу, атомный вес кислорода он определил равным примерно семи.

В 1808г. Дальтон постулировал закон простых кратных отношений:

Если два каких-либо элемента образуют друг с другом несколько химических соединений, то количества одного из элементов, приходящиеся в этих соединениях на одинаковое количество другого элемента, находятся между собой в простых кратных отношениях, т.е. относятся друг к другу как небольшие целые числа.

Занятия метеорологией привели Дальтона к размышлению о строении атмосферы, о том. почему она представляет собой "массу явно однородную". Изучая физические свойства газов, Дальтон принял, что они состоят из атомов. Для объяснения же диффузии газов он предположил, что их атомы имеют различные размеры.

Впервые об атомистической теории Дальтон говорит в лекции "Об абсорбции газов водой и другими жидкостями", которую он прочитал 20 октября 1803г. в литературно-философском обществе Манчестера.

Дальтон строго разграничивал понятия "атом" и "молекула", хотя последнюю и назвал "сложным", или "составным атомом", но этим он только подчёркивал, что эти частицы являются пределом химической делимости соответствующих веществ.

Какими же свойствами обладают атомы?

Во-первых, они неделимы и неизменны. Во-вторых, атомы одного и того же вещества абсолютно одинаковы по форме, весу и другим свойствам. В-третьих, различные атомы соединяются между собой в различных отношениях. В-четвёртых, атомы разных веществ имеют, неодинаковый атомный вес.

В 1804г. состоялась встреча Дальтона с известным английским химиком и историком химии Т.Томсоном. Тот был восхищён теорией Дальтона и в 1807г. изложил её в третьем издании своей популярной книги "Новая система химии". Благодаря этому атомистическая теория увидела свет раньше, чем она была опубликована самим автором.

Джон Дальтон является создателем научной химической атомистики. Он впервые, используя представления об атомах, объяснил состав различных химических веществ и определил их относительные и молекулярные веса.

И тем не менее в начале XIX в. атомно-молекулярное учение в химии с трудом пробивало себе дорогу. Понадобилось ещё полстолетия для его окончательной победы. На этом пути был сформулирован ряд количественных законов (закон постоянных отношений Пруста, закон объёмных отношений Гей-Люссака, закон Авогадро, согласно которому при одинаковых условиях одинаковые объёмы всех газов содержат одно и то же число молекул), которые получали объяснения с позиций атомно-молекулярных представлений. Для экспериментального обоснования атомистики и её внедрения в химию много усилий приложил Й.Б. Берцелиус.

Окончательную же победу атомно-молекулярное учение (и опирающиеся на него способы определения атомных и молекулярных весов) одержало лишь на 1-м Международном конгрессе химиков (1860).

В 50-70-е гг. XIX в. на основе учения о валентности и химической связи была разработана теория химического строения (А.М. Бутлеров, 1861), которая обусловила огромный успех органического синтеза и возникновение новых отраслей хим. промышленности (производство красителей, медикаментов, нефтепереработка и др.), а в теоретическом плане открыла путь построению теории пространственного строения органических соединений - стереохимии (Дж. Г. Вант Гофф, 1874).

Во второй половине XIX в. складываются физическая химия, химическая кинетика, как учение о скоростях химических реакций, теория электролитической диссоциации, химическая термодинамика.

Таким образом, в химии XIX в. сложился новый общий теоретический подход - определение свойств химических веществ в зависимости не только от их состава, но и от их структуры.

Развитие атомно-молекулярного учения привело к идее о сложном строении не только молекулы, но и атома. В начале XIX в. эту мысль высказал английский учёный У. Праут, исходя из результатов измерений, показавших, что атомные веса элементов кратны атомному весу водорода. На основе этого Праут предложил гипотезу, согласно которой атомы всех элементов состоят из атомов водорода.

Новый толчок для развития идеи о сложном строении атома дало великое открытие Д.И.Менделеевым (1869) периодической системы элементов. Менделеев написал блестящий учебник органической химии - первый в России, за который ему была присуждена Большая Демидовская премия Академии наук.

Прочитав в 1867-1868 гг. курс лекций по неорганической химии, Менделеев убедился в необходимости создания отечественного "руководства к химии". Он приступает к написанию учебника "Основы химии". Этот труд был призван "познакомить публику и учащихся" с достижениями химии, её применением в технике, сельском хозяйстве и т.д. Затруднения встретились при написании второй части учебника, где предполагалось поместить материал о химических элементах.

Перепробовав несколько вариантов, Менделеев заметил, что элементы можно располагать в порядке возрастания атомных весов и тогда оказывалось, что в каждой колонке свойства элементов постепенно менялись сверху вниз. Это была первая таблица, озаглавленная "Опыт систем элементов, основанный на их атомном весе и химическом сходстве". Дмитрий Иванович понимал, что таблица отражает принцип периодичности, определённый закон природы, который устанавливает тесную связь между химическими элементами.

В июне 1871г. Менделеев закончил статью "Периодическая законность химических элементов", в которой дал формулировку периодического закона: "Свойства элементов, а потому и свойства образуемых ими простых и сложных тел состоят в периодической зависимости от их атомного веса".

Если в прошлом веке подчёркивалось, что "химия занимается не телами, а веществами" (Д.И. Менделеев), то теперь мы являемся свидетелями того, как объектом всё более пристального внимания учёных-химиков становятся именно реальные макротела - те самые смеси, растворы, сплавы, газы, с которыми они непосредственно имеют дело в лаборатории и на производстве. По словам К. Маркса, прогресс химии "не только умножает число полезных веществ, но и число полезных применений уже известных веществ".

4. Экологические проблемы химической компоненты

современной цивилизации

На всех стадиях своего развития человек был тесно связан с окружающим миром. Но с тех пор как появилось высокоиндустриальное общество, опасное вмешательство человека в природу резко усилилось, расширился объём этого вмешательства, оно стало многообразнее и сейчас грозит стать глобальной опасностью для человечества. Расход невозобновимых видов сырья повышается, все больше пахотных земель выбывает из экономики, так на них строятся города и заводы. Человеку приходится все больше вмешиваться в хозяйство биосферы - той части нашей планеты, в которой существует жизнь. Биосфера Земли в настоящее время подвергается нарастающему антропогенному воздействию. При этом можно выделить несколько наиболее существенных процессов, любой из которых не улучшает экологическую ситуацию на планете.

Наиболее масштабным и значительным является химическое загрязнение среды несвойственными ей веществами химической природы. Среди них - газообразные и аэрозольные загрязнители промышленно-бытового происхождения. Прогрессирует и накопление углекислого газа в атмосфере. Дальнейшее развитие этого процесса будет усиливать нежелательную тенденцию в сторону повышения среднегодовой температуры на планете. Вызывает тревогу у экологов и продолжающееся загрязнение Мирового океана нефтью и нефтепродуктами, достигшее уже 1/5 его общей поверхности. Нефтяное загрязнение таких размеров может вызвать существенные нарушения газо- и водообмена между гидросферой и атмосферой. Не вызывает сомнений и значение химического загрязнения почвы пестицидами и ее повышенная кислотность, ведущая к распаду экосистемы. В целом все рассмотренные факторы, которым можно приписать загрязняющий эффект, оказывают заметное влияние на процессы, происходящие в биосфере.

Человек загрязняет атмосферную часть биосферы уже тысячелетиями, однако последствия употребления огня, которым он пользовался весь этот период, были незначительны. Приходилось мириться с тем, что дым мешал дыханию, и что сажа ложилась черным покровом на потолке и стенах жилища. Получаемое тепло было для человека важнее, чем чистый воздух и незакопченные стены пещеры. Это начальное загрязнение воздуха не представляло проблемы, ибо люди обитали тогда небольшими группами, занимая лишь небольшую часть нетронутой природной среды. И даже значительное сосредоточение людей на сравнительно небольшой территории, как это было в классической древности, не сопровождалось для природы серьезными отрицательными последствиями. Так было вплоть до начала девятнадцатого века.

Но лишь за последние сто лет развитие промышленности "одарило" нас такими производственными процессами, последствия которых вначале человек еще не мог себе представить. Возникли города-миллионеры, рост которых остановить нельзя. Все это результат великих изобретений и завоеваний человека.

В основном существуют три основных источника загрязнения атмосферы: промышленность, бытовые котельные, транспорт. Доля каждого из этих источников в общем, загрязнении воздуха сильно различается в зависимости от места. Сейчас общепризнанно, что наиболее сильно загрязняет воздух промышленное производство. Источники загрязнений - теплоэлектростанции, которые вместе с дымом выбрасывают в воздух сернистый и углекислый газ, металлургические предприятия, особенно цветной металлургии, которые выбрасывают в воздух оксиды азота, сероводород, хлор, фтор, аммиак, соединения фосфора, частицы и соединения ртути и мышьяка, химические и цементные заводы. Вредные газы попадают в воздух в результате сжигания топлива для нужд промышленности, отопления жилищ, работы транспорта, сжигания и переработки бытовых и промышленных отходов.

Атмосферные загрязнители разделяются на первичные, поступающие непосредственно в атмосферу, и вторичные, являющиеся результатом превращения последних. Так, поступающий в атмосферу сернистый газ окисляется до серного ангидрида, который взаимодействует с парами воды и образует капельки серной кислоты. При взаимодействии серного ангидрида с аммиаком образуются кристаллы сульфата аммония. Подобным образом, в результате химических, фотохимических, физико-химических реакций между загрязняющими веществами и компонентами атмосферы, образуются другие вторичные признаки. Основным источником пирогенного загрязнения на планете являются тепловые электростанции, металлургические и химические предприятия, котельные установки, потребляющие более 70% ежегодно добываемого твердого и жидкого топлива. Основными вредными примесями пирогенного происхождения являются следующие:

а) Оксид углерода. Получается при неполном сгорании углеродистых веществ. В воздух он попадает в результате сжигания твердых отходов, с выхлопными газами и выбросами промышленных предприятий. Ежегодно этого газа поступает в атмосферу не менее 250 млн.т. Оксид углерода является соединением, активно реагирующим с составными частями атмосферы и способствует повышению температуры на планете, и созданию парникового эффекта.

б) Сернистый ангидрид. Выделяется в процессе сгорания серосодержащего топлива или переработки сернистых руд (до 70 млн.т.в год). Часть соединений серы выделяется при горении органических остатков в горнорудных отвалах. Только в США общее количество выброшенного в атмосферу сернистого ангидрида составило 65 процентов от общемирового выброса.

в) Серный ангидрид. Образуется при окислении сернистого ангидрида. Конечным продуктом реакции является аэрозоль или раствор серной кислоты в дождевой воде, который подкисляет почву, обостряет.заболевания дыхательных путей человека. Выпадение аэрозоля серной кислоты из дымовых факелов химических предприятий отмечается при низкой облачности и высокой влажности воздуха. Листовые пластинки растений, произрастающих на расстоянии менее 1 км от таких предприятий, обычно бывают густо усеяны мелкими некротическими пятнами, образовавшихся в местах оседания капель серной кислоты. Пирометаллургические предприятия цветной и черной металлургии, а также ТЭС ежегодно выбрасывают в атмосферу десятки миллионов тонн серного ангидрида.

г) Сероводород и сероуглерод. Поступают в атмосферу раздельно или вместе с другими соединениями серы. Основными источниками выброса являются предприятия по изготовлению искусственного волокна, сахара, коксохимические, нефтеперерабатывающие, а также нефтепромыслы. В атмосфере при взаимодействии с другими загрязнителями подвергаются медленному окислению до серного ангидрида.

д) Оксиды азота. Основными источниками выброса являются предприятия, производящие азотные удобрения, азотную кислоту и нитраты, анилиновые красители, нитросоединения, вискозный шелк, целлулоид. Количество оксидов азота, поступающих в атмосферу, составляет 20 млн.т. в год.

е) Соединения фтора. Источниками загрязнения являются предприятия по производству алюминия, эмалей, стекла, керамики, стали, фосфорных удобрений. Фторсодержащие вещества поступают в атмосферу в виде газообразных соединений - фтороводорода или пыли фторида натрия и кальция. Соединения характеризуются токсическим эффектом. Производные фтора являются сильными инсектицидами.

ж) Соединения хлора. Поступают в атмосферу от химических предприятий, производящих соляную кислоту, хлорсодержащие пестициды, органические красители, гидролизный спирт, хлорную известь, соду. В атмосфере встречаются как примесь молекулы хлора и паров соляной кислоты. Токсичность хлора определяется видом соединений и их концентрацией. В металлургической промышленности при выплавке чугуна и при переработке его на сталь происходит выброс в атмосферу различных тяжелых металлов и ядовитых газов. Так, в расчете на 1 т. предельного чугуна выделяется кроме 2,7 кг сернистого газа и 4,5 кг пылевых частиц, определяющих количество соединений мышьяка, фосфора, сурьмы, свинца, паров ртути и редких металлов, смоляных веществ и цианистого водорода.

з) Аэрозольное загрязнение атмосферы. Аэрозоли - это твердые или жидкие частицы, находящиеся во взвешенном состоянии в воздухе. Твердые компоненты аэрозолей в ряде случаев особенно опасны для организмов, а у людей вызывают специфические заболевания. В атмосфере аэрозольные загрязнения воспринимаются в виде дыма, тумана, мглы или дымки. Значительная часть аэрозолей образуется в атмосфере при взаимодействии твердых и жидких частиц между собой или с водяным паром. Средний размер аэрозольных частиц составляет 1-5 мкм. В атмосферу Земли ежегодно поступает около 1 куб. км пылевидных частиц искусственного происхождения. Большое количество пылевых частиц образуется также в ходе производственной деятельности людей. Сведения о некоторых источниках техногенной пыли приведены ниже:

Основными источниками искусственных аэрозольных загрязнений воздуха являются ТЭС, которые потребляют уголь высокой зольности, обогатительные фабрики, металлургические, цементные, магнезитовые и сажевые заводы. Аэрозольные частицы от этих источников отличаются большим разнообразием химического состава. Чаще всего в их составе обнаруживаются соединения кремния, кальция и углерода, реже -оксиды металлов: железа, магния, марганца, цинка, меди, никеля, свинца, сурьмы, висмута, селена, мышьяка, бериллия, кадмия, хрома, кобальта, молибдена, а также асбест.

Еще большее разнообразие свойственно органической пыли, включающей алифатические и ароматические углеводороды, соли кислот. Она образуется при сжигании остаточных нефтепродуктов, в процессе пиролиза на нефтеперерабатывающих, нефтехимических и других подобных предприятиях. Постоянными источниками аэрозольного загрязнения являются промышленные отвалы - искусственные насыпи из переотложенного материала, преимущественно вскрышных пород, образуемых при добыче полезных ископаемых или же из отходов предприятий перерабатывающей промышленности, ТЭС.

Источником пыли и ядовитых газов служат массовые взрывные работы. Так, в результате одного среднего по массе взрыва (250-300 тонн взрывчатых веществ) в атмосферу выбрасывается около 2 тыс.куб.м условного оксида углерода и более 150 т пыли. Производство цемента и других строительных материалов также является источником загрязнения атмосферы пылью. Основные технологические процессы этих производств - измельчение и химическая обработка шихт, полуфабрикатов и получаемых продуктов в потоках горячих газов, что всегда сопровождается выбросами пыли и других вредных веществ в окружающую атмосферу.

К атмосферным загрязнителям относятся также углеводороды -насыщенные и ненасыщенные, включающие от 1 до 13 атомов углерода. Они подвергаются различным превращениям, окислению, полимеризации, взаимодействуя с другими атмосферными загрязнителями после возбуждения солнечной радиацией. В результате этих реакций образуются перекисные соединения, свободные радикалы, соединения углеводородов с оксидами азота и серы часто в виде аэрозольных частиц.

При некоторых погодных условиях могут образовываться особо большие скопления вредных газообразных и аэрозольных примесей в приземном слое воздуха. Обычно это происходит в тех случаях, когда в слое воздуха непосредственно над источниками газопылевой эмиссии существует инверсия - расположения слоя более холодного воздуха под теплым, что препятствует воздушных масс и задерживает перенос примесей вверх. В результате вредные выбросы сосредотачиваются под слоем инверсии, содержание их у земли резко возрастает, что становится одной из причин образования ранее неизвестного в природе фотохимического тумана.

Фотохимический туман (смог) представляет собой многокомпонентную смесь газов и аэрозольных частиц первичного и вторичного происхождения. В состав основных компонентов смога входят озон, оксиды азота и серы, многочисленные органические соединения перекисной природы, называемые в совокупности фотооксид антами.

Фотохимический смог возникает в результате фотохимических реакций при определенных условиях: наличии в атмосфере высокой концентрации оксидов азота, углеводородов и других загрязнителей, интенсивной солнечной радиации и безветрия или очень слабого обмена воздуха в приземном слое при мощной и в течение не менее суток повышенной инверсии. Устойчивая безветренная погода, обычно сопровождающаяся инверсиями, необходима для создания высокой концентрации реагирующих веществ. Такие условия создаются чаще в июне-сентябре и реже зимой. При продолжительной ясной погоде солнечная радиация вызывает расщепление молекул диоксида азота с образованием оксида азота и атомарного кислорода. Атомарный кислород с молекулярным кислородом дают озон.

Казалось бы, последний, окисляя оксид азота, должен снова превращаться в молекулярный кислород, а оксид азота - в диоксид. Но этого не происходит. Оксид азота вступает в реакции с олефинами выхлопных газов, которые при этом расщепляются по двойной связи и образуют осколки молекул и избыток озона. В результате продолжающейся диссоциации новые массы диоксида азота расщепляются и дают дополнительные количества озона. Возникает циклическая реакция, в итоге которой в атмосфере постепенно накапливается озон. Этот процесс в ночное время прекращается.

В свою очередь озон вступает в реакцию с олефинами. В атмосфере концентрируются различные перекиси, которые в сумме и образуют характерные для фотохимического тумана оксиданты. Последние являются источником так называемых свободных радикалов, отличающихся особой реакционной способностью. Такие смоги - нередкое явление над Лондоном, Парижем, Лос-Анджелесом, Нью-Йорком и другими городами Европы и Америки. По своему физиологическому воздействию на организм человека они крайне опасны для дыхательной и кровеносной системы и часто бывают причиной преждевременной смерти городских жителей с ослабленным здоровьем.

Приоритет в области разработки предельно допустимых концентраций (ПДК) в воздухе принадлежит отечественной наук. ПДК – это такие концентрации, которые на человека и его потомство прямого или косвенного воздействия не оказывают, не ухудшают их работоспособности, самочувствия, а также санитарно-бытовых условий жизни людей. Обобщение всей информации по ПДК, получаемой всеми ведомствами, осуществляется в Главной Геофизической Обсерватории (ГГО).

Всякий водоем или водный источник связан с окружающей его внешней средой. На него оказывают влияние условия формирования поверхностного или подземного водного стока, разнообразные природные явления, индустрия, промышленное и коммунальное строительство, транспорт, хозяйственная и бытовая деятельность человека. Последствием этих влияний является привнесение в водную среду новых, несвойственных ей веществ - загрязнителей, ухудшающих качество воды. Загрязнения, поступающие в водную среду, классифицируют по-разному, в зависимости от подходов, критериев и задач. Так, обычно выделяют химическое, физическое и биологические загрязнения. Химическое загрязнение представляет собой изменение естественных химических свойств вода за счет увеличения содержания в ней вредных примесей как неорганической (минеральные соли, кислоты, щелочи, глинистые частицы), так и органической природы (нефть и нефтепродукты, органические остатки, поверхностно-активные вещества, пестициды).

Основными неорганическими (минеральными) загрязнителями пресных и морских вод являются разнообразные химические соединения, токсичные для обитателей водной среды. Это соединения мышьяка, свинца, кадмия, ртути, хрома, меди, фтора. Большинство из них попадает в воду в результате человеческой деятельности. Тяжелые металлы поглощаются фитопланктоном, а затем передаются по пищевой цепи более высокоорганизованным организмам.

К опасным загрязнителям водной среды можно отнести неорганические кислоты и основания, обуславливающие широкий диапазон рН промышленных стоков (1,0-11,0) и способных изменять рН водной среды до значений 5,0 или выше 8,0, тогда как рыба в пресной и морской воде может существовать только в интервале рН 5,0-8,5.

Среди основных источников загрязнения гидросферы минеральными веществами и биогенными элементами следует упомянуть предприятия пищевой промышленности и сельское хозяйство.

С орошаемых земель ежегодно вымывается около 6 млн.т солей. К 2000 году так или иначе произошло увеличение их массы до 12 млн.т/год. Отходы, содержащие ртуть, свинец, медь локализованы в отдельных районах у берегов, однако некоторая их часть выносится далеко за пределы территориальных вод. Загрязнение ртутью значительно снижает первичную продукцию морских экосистем, подавляя развитие фитопланктона. Отходы, содержащие ртуть, обычно скапливаются в донных отложениях заливов или эстуариях рек. Дальнейшая ее миграция сопровождается накоплением метиловой ртути и ее включением в трофические цепи водных организмов.

Так, печальную известность приобрела так называемая болезнь Минамата, впервые обнаруженная японскими учеными у людей, употреблявших в пищу рыбу, выловленную в заливе Минамата, в который бесконтрольно сбрасывали промышленные стоки с техногенной ртутью.

Среди вносимых в океан с суши растворимых веществ, большое значение для обитателей водной среды имеют не только минеральные, биогенные элементы, но и органические остатки. Вынос в океан органического вещества оценивается в 300 - 380 млн.т/год.

Сточные воды, содержащие суспензии органического происхождения или растворенное органическое вещество, пагубно влияют на состояние водоемов. Осаждаясь, суспензии заливают дно и задерживают развитие или полностью прекращают жизнедеятельность данных микроорганизмов, участвующих в процессе самоочищения вод. При гниении данных осадков могут образовываться вредные соединения и отравляющие вещества, такие как сероводород, которые приводят к загрязнению всей воды в реке. Наличие суспензий затрудняют также проникновение света вглубь воды, отчего происходит замедление процессов фотосинтеза.

Одним из основных санитарных требований, предъявляемых к качеству воды, является содержание в ней необходимого количества кислорода. Вредное действие оказывают все загрязнения, которые, так или иначе содействуют снижению содержания кислорода в воде. Поверхностно активные вещества - жиры, масла, смазочные материалы - образуют на поверхности воды пленку, которая препятствует газообмену между водой и атмосферой, что снижает степень насыщенности воды кислородом.

Значительный объем органических веществ, большинство из которых не свойственно природным водам, сбрасывается в реки вместе с промышленными и бытовыми стоками. Нарастающее загрязнение водоемов и водостоков наблюдается во всех промышленных странах.

В связи с быстрыми темпами урбанизации и несколько замедленным строительством очистных сооружений или их неудовлетворительной эксплуатацией водные бассейны и почва загрязняются бытовыми отходами. Особенно ощутимо загрязнение в водоемах с замедленным течением или непроточных (водохранилища, озера). Разлагаясь в водной среде, органические отходы могут стать средой для патогенных организмов. Вода, загрязненная органическими отходами, становится практически непригодной для питья и других надобностей. Бытовые отходы опасны не только тем, что являются источником некоторых болезней человека (брюшной тиф, дизентерия, холера), но и тем, что требуют для своего разложения много кислорода. Если бытовые сточные воды поступают в водоем в очень больших количествах, то содержание растворимого кислорода может понизится ниже уровня, необходимого для жизни морских и пресноводных организмов.

Нефть представляет собой вязкую маслянистую жидкость, имеющую темно-коричневый цвет и обладающую слабой флуорисценцией. Нефть состоит преимущественно из насыщенных алифатических и гидроароматических углеводородов. Основные компоненты нефти - углеводороды (до 98%) - подразделяются на 4 класса;

а) Парафины (алкены) - (до 90% от общего состава) - устойчивые вещества, молекулы которых выражены прямой и разветвленной цепью атомов углерода. Легкие парафины обладают максимальной летучестью и растворимостью в воде.

б) Циклопарафины - (30 - 60% от общего состава) насыщенные циклические соединения с 5-6 атомами углерода в кольце. Кроме циклопентана и циклогексана в нефти встречаются бициклические и полициклические соединения этой группы. Эти соединения очень устойчивы и плохо поддаются биоразложению.

в) Ароматические углеводороды - (20 - 40% от общего состава) -ненасыщенные циклические соединения ряда бензола, содержащие в кольце на 6 атомов углерода меньше, чем циклопарафины. В нефти присутствуют летучие соединения с молекулой в виде одинарного кольца (бензол, толуол, ксилол), затем бициклические (нафталин), полуциклические(пирен).

г) Олефины (алкены) - (до 10% от общего состава) - ненасыщенные нециклические соединения с одним или двумя атомами водорода у каждого атома углерода в молекуле, имеющей прямую или разветвленную цепь.

Нефть и нефтепродукты являются наиболее распространенными загрязняющими веществами в Мировом океане. К началу 80-ых годов в океан ежегодно поступало около 6 млн.т нефти, что составляло 0,23% мировой добычи. Наибольшие потери нефти связаны с ее транспортировкой из районов добычи. Аварийные ситуации, слив за борт танкерами промывочных и балластных вод, - все это обуславливает присутствие постоянных полей загрязнения на трассах морских путей. В период за 1962-79 годы в результате аварий в морскую среду поступило около 2 млн. т. нефти. За последние 30 лет, начиная с 1964 года, пробурено около 2000 скважин в Мировом океане, из них только в Северном море 1000 и 350 промышленных скважин оборудовано. Из-за незначительных утечек ежегодно теряется 0,1 млн.т нефти.

Большие массы нефти поступают в моря по рекам с бытовыми и ливневыми стоками. Объем загрязнений из этого источника составляет 2,0 млн.т/год. Со стоками промышленности ежегодно попадает 0.5 млн.т нефти. Попадая в морскую среду, нефть сначала растекается в виде пленки, образуя слои различной мощности.

Нефтяная пленка изменяет состав спектра и интенсивность проникновения в воду света. Пропускание света тонкими пленками сырой нефти составляет 1-10% (280 нм), 60-70% (400 нм). Пленка толщиной 30-40 мкм полностью поглощает инфракрасное излучение. Смешиваясь с водой, нефть образует эмульсию двух типов: прямую "нефть в воде" и обратную "вода в нефти". Прямые эмульсии, составленные капельками нефти диаметром до 0,5 мкм, менее устойчивы и характерны для нефти, содержащей поверхностно-активные вещества. При удалении летучих фракций, нефть образует вязкие обратные эмульсии, которые могут сохраняться на поверхности, переноситься течением, выбрасываться на берег и оседать на дно.

Пестициды составляют группу искусственно созданных веществ, используемых для борьбы с вредителями и болезнями растений. Пестициды делятся на следующие группы: инсектициды - для борьбы с вредными насекомыми, фунгициды и бактерициды - для борьбы с бактериальными болезнями растений, гербициды - против сорных растений. Установлено, что пестициды уничтожая вредителей, наносят вред многим полезным организмам и подрывают здоровье биоценозов. В сельском хозяйстве давно уже стоит проблема перехода от химических (загрязняющих среду) к биологическим (экологически чистым) методам борьбы с вредителями. В настоящее время более 5 млн.т пестицидов поступает на мировой рынок. Около 1.5 млн.т этих веществ уже вошло в состав наземных и морских экосистем золовым и водным путем. Промышленное производство пестицидов сопровождается появлением большого количества побочных продуктов, загрязняющих сточные воды. В водной среде чаще других встречаются представители инсектицидов, фунгецидов и гербицидов.

Синтезированные инсектициды делятся на три основных группы: хлороорганические, фосфороорганические и карбонаты. Хлороорганические инсектициды получают путем хлорирования ароматических и жидких гетероциклических углеводородов. К ним относятся ДДТ и его производные, в молекулах которых устойчивость алифатических и ароматических групп в совместном присутствии возрастает, всевозможные хлорированные производные хлородиена (элдрин). Эти вещества имеют период полураспада до нескольких десятков лет и очень устойчивы к биодеградации. В водной среде часто встречаются полихлорбифенилы - производные ДДТ без алифатической части, насчитывающие 210 гомологов и изомеров. За последние 40 лет использовано более 1,2 млн.т полихлорбифенилов в производстве пластмасс, красителей, трансформаторов, конденсаторов. Полихлорбифенилы (ПХБ) попадают в окружающую среду в результате сбросов промышленных сточных вод и сжигания, твердых отходах на свалках. Последний источник поставляет ПБХ в атмосферу, откуда они с атмосферными осадками выпадают во все районах Земного шара. Так в пробах снега, взятых в Антарктиде, содержание ПБХ составило 0,03 - 1,2кг./л

Синтетические поверхностно-активные вещества (СПАВ) относятся к обширной группе веществ, понижающих поверхностное натяжение воды. Они входят в состав синтетических моющих средств (СМС), широко применяемых в быту и промышленности. Вместе со сточными водами СПАВ попадают в материковые воды и морскую среду. СМС содержат полифосфаты натрия, в которых растворены детергенты, а также ряд добавочных ингредиентов, токсичных для водных организмов: ароматизирующие вещества, отбеливающие реагенты (персульфаты, пербораты), кальцинированная сода, карбоксиметилцеллюлоза, силикаты натрия.

В зависимости от природы и структуры гидрофильной части молекулы, СПАВ делятся на анионоактивные, катионоактивные, амфотерные и неионогенные. Последние не образуют ионов в воде. Наиболее распространенными среди СПАВ, являются анионоактивные вещества. На их долю приходится более 50% всех производимых в мире СПАВ. Присутствие, СПАВ в сточных водах промышленности связано с использованием их в таких процессах, как флотационное обогащение руд, разделение продуктов химических технологий, получение полимеров, улучшение условий бурения нефтяных и газовых скважин, борьба с коррозией оборудования. В сельском хозяйстве СПАВ применяется в составе пестицидов.

Канцерогенные вещества - это химически однородные соединения, проявляющие трансформирующую активность и способность вызывать канцерогенные, тератогенные (нарушение процессов эмбрионального развития) или мутагенные изменения в организмах. В зависимости от условий воздействия они могут приводить к ингибированию роста, ускорению старения, нарушению индивидуального развития и изменению генофонда организмов.

К веществам, обладающим канцерогенными свойствами, относятся хлорированные алифатические углеводороды, винилхлорид, и особенно, полициклические ароматические углеводороды (ПАУ). Максимальное количество ПАУ в современных данных осадках Мирового океана (более 100 мкг/км массы сухого вещества) обнаружено в тектонически активных зонах, подверженным глубинному термическому воздействию. Основные антропогенные источники ПАУ в окружающей среде - это пиролиз органических веществ при сжигании различных материалов, древесины и топлива.

Тяжелые металлы (ртуть, свинец, кадмий, цинк, медь, мышьяк,) относятся к числу распространенных и весьма токсичных загрязняющих веществ. Они широко применяются в различных промышленных производствах, поэтому, несмотря на очистные мероприятия, содержание соединения тяжелых металлов в промышленных сточных водах довольно высокое. Большие массы этих соединений поступают в океан через атмосферу. Для морских биоценозов наиболее опасны ртуть, свинец и кадмий.

Ртуть переносится в океан с материковым стоком и через атмосферу. При выветривании осадочных и изверженных пород ежегодно выделяется 3,5 тыс.т ртути. В составе атмосферной пыли содержится около 12 тыс.т ртути, причем значительная часть - антропогенного происхождения. Около половины годового промышленного производства этого металла (910 тыс.т/год) различными путями попадает в океан.

В районах, загрязняемых промышленными водами, концентрация ртути в растворе и взвесях сильно повышается. При этом некоторые бактерии переводят хлориды в высокотоксичную метилртуть. Заражение морепродуктов неоднократно приводило к ртутному отравлению прибрежного населения. К 1977 году насчитывалось 2800 жертв болезни Минамата, причиной которой послужили отходы предприятий по производству хлорвинила и ацетальдегида, на которых в качестве катализатора использовалась хлористая ртуть. Недостаточно очищенные сточные воды предприятий поступали в залив Минамата.

Свинец - типичный рассеянный элемент, содержащийся во всех компонентах окружающей среды: в горных породах, почвах, природных водах, атмосфере, живых организмах. Наконец, свинец активно рассеивается в окружающую среду в процессе хозяйственной деятельности человека. Это выбросы с промышленными и бытовыми стоками, с дымом и пылью промышленных предприятий, с выхлопными газами двигателей внутреннего сгорания. Миграционный поток свинца с континента в океан идет не только с речными стоками, но и через атмосферу. С континентальной пылью океан получает 20-30·10 3 т свинца в год.

Многие страны, имеющие выход к морю, производят морское захоронение различных материалов и веществ, в частности грунта, вынутого при дноуглубительных работах, бурового шлака, отходов промышленности, строительного мусора, твердых отходов, взрывчатых и химических веществ, радиоактивных отходов.

Объем захоронений составил около 10% от всей массы загрязняющих веществ, поступающих в Мировой океан. Основанием для такого рода действий (дампинга) в море служит возможность морской среды к переработке большого количества органических и неорганических веществ без особого ущерба воды. Однако эта способность моря не беспредельна. Поэтому дампинг рассматривается как вынужденная мера, временная дань общества несовершенству технологии.

В шлаках промышленных производств присутствуют разнообразные органические вещества и соединения тяжелых металлов. Бытовой мусор в среднем содержит (на массу сухого вещества) 32-40% органических веществ, 0,56% азота, 0.44% фосфора, 0,155% цинка, 0,085% свинца, 0,001% ртути, 0,001% кадмия.

Во время сброса при прохождении материала сквозь столб воды, часть загрязняющих веществ переходит в раствор, изменяя качество воды, другая сорбируется частицами взвеси и переходит в донные отложения. Одновременно повышается мутность воды.

Наличие органических веществ часто приводит к быстрому расходованию кислорода в воде и нередко - к его полному исчезновению, растворению взвесей, накоплению металлов в растворенной форме, появлению сероводорода. Присутствие большого количества органических веществ создает в грунтах устойчивую восстановительную среду, в которой возникает особый тип иловых вод, содержащих сероводород, аммиак, ионы металлов. Воздействию сбрасываемых материалов в разной степени подвергаются организмы бентоса и др. В случае образования поверхностных пленок, содержащих нефтяные углеводороды и СПАВ, нарушается газообмен на границе воздух - вода.

Загрязняющие вещества, поступающие в раствор, могут аккумулироваться в тканях и органах гидробиантов и оказывать токсическое воздействие на них. Сброс материалов дампинга на дно и длительная повышенная мутность придонной воды приводит к гибели от удушья малоподвижные формы бентоса. У выживших рыб, моллюсков и ракообразных сокращается скорость роста за счет ухудшения условий питания и дыхания. Нередко изменяется видовой состав данного сообщества.

При организации системы контроля за сбросами отходов в море решающее значение имеет определение районов дампинга, определение динамики загрязнения морской воды и донных отложений.

Тепловое загрязнение поверхности водоемов и прибрежных морских акваторий возникает в результате сброса нагретых сточных вод электростанциями и некоторыми промышленными производствами. Сброс нагретых вод во многих случаях обуславливает повышение температуры воды в водоемах на 6-8 градусов Цельсия. Площадь пятен нагретых вод в прибрежных районах может достигать 30 кв. км. Более устойчивая температурная стратификация препятствует водообмену поверхностным и донным слоем. Растворимость кислорода уменьшается, а потребление его возрастает, поскольку с ростом температуры усиливается активность аэробных бактерий, разлагающих органическое вещество. Растет видовое разнообразие фитопланктона и всей флоры водорослей.

Почвенный покров Земли представляет собой важнейший компонент биосферы Земли. Именно почвенная оболочка определяет многие процессы, происходящие в биосфере.

Важнейшее значение почв состоит в аккумулировании органического вещества, различных химических элементов, а также энергии. Почвенный покров выполняет функции биологического поглотителя, разрушителя и нейтрализатора различных загрязнений. Если это звено биосферы будет разрушено, то сложившееся функционирование биосферы необратимо нарушится, Именно поэтому чрезвычайно важно изучение глобального биохимического значения почвенного покрова, его современного состояния и изменения под влиянием антропогенной деятельности. Одним из видов антропогенного воздействия является загрязнение пестицидами.

Открытие пестицидов - химических средств защиты растений и животных от различных вредителей и болезней - одно из важнейших достижений современной науки. Сегодня в мире на 1 га наносится 300 кг химических средств. Однако в результате длительного применения пестицидов в сельском хозяйстве, медицине (борьба с переносчиками болезней) почти повсеместно отличается снижение их эффективности вследствие развития резистентных рас вредителей и распространению "новых" вредных организмов, естественные враги и конкуренты которых были уничтожены пестицидами.

В то же время действие пестицидов стало проявляться в глобальных масштабах. Из громадного количества насекомых вредными являются лишь 0,3% или 5 тыс. видов. У 250-ти видов обнаружена резистентность к пестицидам. Это усугубляется явлением перекрёстной резистенции, заключающейся в том, что повышенная устойчивость к действию одного препарата сопровождается устойчивостью к соединениям других классов. С общебиологических позиций резистентность можно рассматривать как смену популяций в результате перехода от чувствительного штамма к устойчивому штамму того же вида вследствие отбора, вызванного пестицидами. Это явление связано с генетическими, физиологическими и биохимическими перестройками организмов.

Неумеренное применение пестицидов (гербицидов, инсектицидов, дефолиантов) негативно влияет на качество почвы. В связи с этим усиленно изучается судьба пестицидов в почвах и возможности и возможности их обезвреживать химическими и биологическими способами. Очень важно создавать и применять только препараты с небольшой продолжительностью жизни, измеряемой неделями или месяцами. В этом деле уже достигнуты определенные успехи и внедряются препараты с большой скоростью деструкции, однако проблема в целом ещё не решена.

Кислые атмосферные выпады на сушу. Одна из острейших глобальных проблем современности и обозримого будущего - это проблема возрастающей кислотности атмосферных осадков и почвенного покрова. Районы кислых почв не знают засух, но их естественное плодородие понижено и неустойчиво, они быстро истощаются и урожаи на них низкие. Кислотные дожди вызывают не только подкисление поверхностных вод и верхних горизонтов почв. Кислотность с нисходящими потоками воды распространяется на весь почвенный профиль и вызывает значительное подкисление грунтовых вод. Кислотные дожди возникают в результате хозяйственной деятельности человека, сопровождающейся эмиссией колоссальных количеств оксидов серы, азота, углерода.

Эти оксиды, поступая в атмосферу переносятся на большие расстояния, взаимодействуют с водой и превращаются в растворы смеси сернистой, серной, азотистой, азотной и угольной кислот, которые выпадают в виде "кислых дождей" на сушу, взаимодействуя с растениями, почвами, водами. Главными источниками в атмосфере является сжигание сланцев, нефти, углей, газа в индустрии, в сельском хозяйстве, в быту. Хозяйственная деятельность человека почти вдвое увеличила поступление в атмосферу оксидов серы, азота, сероводорода и оксида углерода.

Естественно, что это сказалось на повышении кислотности атмосферных осадков, наземных и грунтовых вод. Для решения этой проблемы необходимо увеличить объём представительных систематических измерений соединений загрязняющих атмосферу веществ на больших территориях.

Заключение

Охрана природы - задача нашего века, проблема, ставшая социальной. Снова и снова мы слышим об опасности, грозящей окружающей среде, но до сих пор многие из нас считают их неприятным, но неизбежным порождением цивилизации и полагают, что мы ещё успеем справиться со всеми выявившимися затруднениями. Однако воздействие человека на окружающую среду приняло угрожающие масштабы. Чтобы в корне улучшить положение, понадобятся целенаправленные и продуманные действия. Ответственная и действенная политика по отношению к окружающей среде будет возможна лишь в том случае, если мы накопим надёжные данные о современном состоянии среды, обоснованные знания о взаимодействии важных экологических факторов, если разработает новые методы уменьшения и предотвращения вреда, наносимого Природе Человеком.

Литература:

I . Основная

    ** Горшков С.П. Экзодинамические процессы освоенных территорий. М., 1982.

    ** Карпенков С.Х. Концепции современного естествознания. М., 2000

    ** Никитин Д.П., Новиков Ю.В. Окружающая среда и человек. М., 1986.

    ** Одум Ю. Основы экологии. М., 1975.

    ** Радзевич Н.Н., Пашканг К.В. Охрана и преобразование природы. М., 1986.

II . Дополнительная

    * Концепции современного естествознания / Под ред. С.И. Самыгина. Ростов н/Д, 2001.

    ** Лучшие рефераты. Концепции современного естествознания. Ростов н/Д, 2002.

    * Найдыш В.М. Концепции современного естествознания. М., 2002.

    ** Скопин А.Ю. Концепции современного естествознания. М., 2003.

    * Соломатин В.А. История и концепции современного естествознания. М., 2002.

картины мира (2)Реферат >> Биология

... вещества химиков не волновала. Однако ситуация изменилась, когда концепция ... превращения обычного... единства индукции и дедукции, метод математики. Научная картина мира ... картины мира подменяют структурный ... реактивной технике, химической и электротехнической...

  • Структурные уровни организации живой материи

    Реферат >> Биология

    ... вещества Аминокислоты - орган. соединения, основной структурный ... единства различных типов физических процессов, их взаимного превращения . Изучение процесса превращения ... научной картины мира , решения... и химическим законам. Первая концепция является религиозной...

  • Современная естественнонаучная картина мира (2)

    Контрольная работа >> Философия

    ... единство естественно-научной и гуманитарной культур 5 Электромагнитная картина мира 6 Структурные ... Превращения поля в вещество и вещества ... химического элемента. Вещества неорганические - это химические соединения, образуемые всеми химическими ... Концепции ...

  • Рождение химии, так же как и всей европейской науки, несмотря на их долгую историю становления, связывают с возникновением идеи существования законов природы в Новое время. Классическим определением химии является определение, согласно которому, химия - это наука о веществах, об их строении, свойствах, о реакциях и законах, которым подчиняются их превращения; одна из отраслей естествознания 1 . Однако уже в 1967 г. в фундаментальной монографии «Эволюция представлений об основных законах химии» В. И. Кузнецова сделан вывод, что определение химии как «науки о веществах и их превращениях» устарело . Изменились понимание структуры вещества и динамики химических процессов и, соответственно, методология их исследования. Это привело к плодотворному развитию всех основных направлений химических исследований. Были открыты новые химические соединения. Так, современная химия располагает более 15 млн химических соединений и химических реакций, обнаруживающие неожиданные свойства и потребовавших введения совершенно новых понятий.

    Ю. А. Жданов, обращаясь к проблеме специфики химической формы движения, отмечает, что как это ни парадоксально, но химия в системе современного естествознания занимает несколько двусмысленное положение: ее охотно признают в качестве необходимой научной основы для понимания биологических, геологических явлений, для создания технологических процессов, но нередко ей отказывают в статусе теоретической науки, сводя к квантовой механике, статической физике, термодинамике . Жданов пишет, что существует немало авторитетных свидетелей как из среды философов, так и из числа естествоиспытателей, готовых поклясться, что химия как наука в принципе не существует, что под термином «химия» скрывается смесь точной, элегантной физической теории и грязной, вульгарной кухни, которую лишь из сострадания можно назвать наукой. В такой ситуации справедлив вопрос, который ставит в своих исследованиях не только К). А. Жданов, но и многие ученые и философы: если теоретическая сторона химии исчерпывается физикой, то от химии остается лишь практическое экспериментирование, но кто же решится считать наукой область деятельности, лишенную своей собственной теории?

    Несмотря на то, что возникают оценки современного состояния химии как рождения повой химии, одной из проблем, которая требует прояснения, является вопрос о редукции химического знания к физическому . Эта проблема - философский вопрос, поскольку, по сути, это вопрос, как он сформулирован

    В. Декельманом о том, имеет ли химия некоторое собственное понятие бытия или же она по самым своим основам является всего лишь частной областью физики . Традиция сведения химических изменений к физическим имеет свои истоки в представлениях о том, что атомы огня, воздуха и земли механически взаимодействуют друг с другом и образуют «смешанные тела» (Р. Декарт, Р. Бойль, И. Ньютон). Согласно М. Волькенштей- ну, не существует теоретической химии, кроме физики. Это понимание утвердилось с развитием, во-первых, классической механики (М. Фарадей) и разделялось многими химиками; например, Д. И. Менделеев признавал, что блеск химических открытий сделал современную химию совершенно специальной наукой, при этом отмечал, что «несомненно, должно настать время, когда химическое сродство будет рассматриваться как механическое явление» . Во-вторых, с развитием квантовой механики, принципы и положения которой применимы для решения традиционных проблем химической науки, что дает основания для убеждений в квантовомеханическом характере фундаментальных основ химии.

    Физической основой химического знания являются следующие главные постулаты квантовой механики: 1) понятие волновой функции электрона как распределенного в пространстве и времени заряда и спина (углового момента); 2) принцип Паули, «организующий» электроны по энергетическим уровням, спиновым состояниям и но их собственным орбиталям (волновым функциям); 3) уравнение Э. Шрёдингера как квантовый наследник уравнений классической механики.

    В связи с этим многие физики XX в., например, В. Гейзенберг, П. Иордан, Р. Фейнман, развивали тезис о возможности сведения закономерностей любых химических процессов к фундаментальным физическим законам. Более того, физиками выражается уверенность в том, что непременно наступит момент, «когда биология также полностью сольется с физикой и химией, как нынешняя квантовая механика слила воедино физику и химию» . Многие представители отечественной физики и философии также разделяют эту точку зрения. Так, С. В. Вонсовский пишет, что во всех химических процессах мы встречаемся, прежде всего, с атомизмом тел природы . Химия понимается им как одна из важнейших естественно-научных дисциплин, прежде всего наука о структуре молекул, а также о процессах взаимодействия молекул и поведении веществ при различных химических реакциях.

    Проблема редукции в химической картине мира - это попытки превратить химию в столь же точную науку, как и теоретическая физика. Однако существует и другая основа химии - математическая, выражением которой стало установление множества количественных закономерностей, точных законов (включая электронную периодичность закона Менделеева), высочайшего измерительного уровня определения атомно-молекулярных, термодинамических и кинетических констант, характеризующих вещество и химический процесс. Наряду с фундаментальной физико-математической основой химии на сегодняшний день сформировалось большое количество исследовательских областей самого химического знания. Более того, тенденции развития междисциплинарных взаимодействий как на стыках химических дисциплин, так и между всеми естественными науками, привели к действию обратных связей между дисциплинами.

    Основной тезис традиции, противостоящей редукции химии к физике: «В явлении химическом всегда есть нечто большее, чем в просто явлении физическом» (В. Оствальд, Н. Н. Семенов, Ю. А. Жданов, Б. М. Кедров, А. Н. Несмеянов и др.). Это положение приводит к необходимости постановки проблемы объектной основы химии. Выражением этой проблемы может служить вопрос: имеют ли химия и физика дело с одним и тем же объектом изучения?

    Как отмечает Г. А. Крестов, химия изучает мир объединяемым понятием материи, которая существует в форме вещества и поля, обладающих массой, энергией и характеризующихся диалектическим единством корпускулярных и волновых свойств .

    Однако понятием «поля» оперирует физика. В. М. Кедров отмечает, что атомы и молекулы могут быть конечной ступенью развития объекта по отношению к своим исходным структурным элементам и являться объектом изучения физики, однако они могут быть и исходной химической единицей по отношению к возникающим из него молекулярным структурам и в этом случае выступать объектом изучения химии 11 .

    Сторонники сведения химических связей к физическим постулируют понимание химического взаимодействия как особой разновидности более общего электромагнитного взаимодействия. Если принять во внимание, что индивидуальный атом еще не является химическим веществом, то и периодическая система элементов Д. И. Менделеева не является химической концепцией. Как справедливо отмечает В. А. Энгельгардт, проводя анализ химического процесса: «...часть, ранее бывшая самостоятельной, перестает существовать как таковая, становится компонентом внутренне объединенного интегрального целого. Возникает нечто новое, ранее не существовавшее, со свойственными ему новыми качествами» .

    Особенность химической картины мира заключается в том, что основными объектами изучения являются не просто атомы или молекулы, но очень сложная организация вещества. Необходимо принять во внимание, что перестройка электронных орбиталей атома происходит внутри атома как единого целого. То есть перестройка электронных орбиталей обусловлена всей структурой атома, а не только индивидуальными свойствами электронов. Только в рамках целого можно говорить о том, что то или иное взаимодействие является химическим. Необходимо принять во внимание, что химические соединения построены не из индивидуальных атомов, а из атомных ядер (атомных остовов), связанных обобществленным электронным континуумом . Это обусловливает то, что процесс потери электрона одним атомом и присоединение его другим не может отражать сущность химического взаимодействия.

    В этом вопросе такие исследователи, как Н. М. Черемных и О. С. Сироткин , справедливо полагают, что именно наличие химической связи в веществе является критерием того, что оно является объектом химического исследования; ни элементарная частица, ни атом (считающийся иногда «законным» объектом химии) этому критерию не удовлетворяют, и поэтому модели элементарного и атомного уровня организации вещества нельзя экстраполировать на химический уровень. Химическая система - это некоторая целостность, поэтому описание отдельных элементов, на основе которых она возникла, не может дать цельную картину химического процесса, например, образования гликогена из глюкозы и т. д. Справедливо утверждение того, что существует различие между физикой и химией, оно не сводится только к различию химического и физического (электромагнитного) взаимодействий. Н. Н. Семёнов выделяет основные принципы, из которых могут быть выведены все химические закономерности, не сводимые к законам физики:

    Принцип электронного строения молекулярных систем; учение о взаимосвязи строения и свойств молекулярных

    • - учение о реакционной способности химических соединений;
    • - концепция единства химических явлений .

    Более того, если принять во внимание то, что, согласно авторитетному мнению физикохимика Н. Н. Семёнова, сущностью химического является химический процесс, рассматриваемый в современной химии как кинетический континуум множества веществ, то именно химический процесс образует мост между объектами физики и объектами биологии .

    • См.: Химический энциклопедический словарь. М. : Советская энциклопедия,1983.
    • См.: Кузнецов В. И. Эволюция представлений об основных законах химии.М. : Наука, 1967.
    • См.: Жданов Ю. А. Углерод и жизнь. Ростов н/Д: Изд-во РГУ, 1968 ; Жданов Ю. А. Очерки методологии органической химии. М. : Высш. школа, 1960.
    • См.: Кузнецов В. И. Диалектика развития химии. М. : Наука, 1973 ; Соловьёв Ю. И., Трифонов Д. II., Шамин А. II. Развитие основных направлений современной химии. М. : Просвещение, 1978 ; Полит Л. Общая химия. М. : Мир, 1974.

    История химии: алхимия; период объединения химии (ятрохимия, пневматическая химия, теория флогистона и ее противники, период количественных законов (атомистическая химия)); структуризация современного химического знания.

    Вещество и элемент. Химические системы. Энергетика химических процессов. Физическая связь и химическая реакция. Подходы к классификации химических реакций. Скорость химической реакции.

    Периодическая система элементов Д. Менделеева.

    Химия Земли: геохимия. Химия жизни: биохимия.

    Применение химического знания в промышленности, сельском хозяйстве, медицине.

    Модуль 3 Науки о живой природе

    Тема 6. Специфика биологического объекта и проблема происхождения жизни

    Специфика живой природы. Понятия хаоса и порядка. Единство живого и неживого. Границы жизни. Феномен жизни и его трактовки.

    Подходы к выявлению специфики живого: субстратный, энергетический, информационный. Подходы к определению жизни: моноатрибутивный, полиатрибутивный.

    Специфика и структура биологического знания. Задачи современной биологии: решение проблемы возникновения биологического объекта, системной организации живого, эволюции биологического объекта.

    Методологическое значение принципа историзма в решении проблемы происхождения жизни. Историческая экстраполяция.

    Эволюция концепций происхождения жизни. Биогенез и абиогенез. Концепция самопроизвольного зарождения жизни. Опыты Л. Пастера. Концепция панспермии и ее эволюция (С. Аррениус, В.И. Вернадский, Хоолдейн, Крик). Субстратная концепция происхождения жизни.

    Тема 7. Системность живого и проблема развития органического мира

    Принцип системности в исследовании живого. Полемика механистического и виталистического направления в биологии. Особенности живых систем: эволюционизм, раздражимость, наличие и использование информации, самоуправление и др.

    Критерии выявления уровней организации живого. Упорядоченность биологического объекта: пространственный, функциональный, временной аспекты. Уровни организации живого: клетка и ее составляющие, организм и его свойства; вид, биогеоценоз.

    Зарождение идеи развития живой природы в античной натурфилософии. Наивный трансформизм. Креационизм. Систематизация материала ботаники и зоологии. Первые таксономические классификации.

    Эволюционное учение Ч. Дарвина и утверждение идеи развития в биологии. Движущие силы и факторы эволюции. Понятия «наследственность», «изменчивость», «естественный отбор». Экспериментальное изучение отдельных факторов эволюции. Генетика и эволюция. Синтетическая теория эволюции.

    Проблема выделения системных единиц эволюции: организмоцентрический и популяционный подходы. Филогенез и онтогенез. Проблема управления эволюционным процессом.

    Тема 8. Проблема происхождения и сущности идеальных процессов

    Понятие и свойства кибернетических систем. Основные этапы процесса цефализации. Опережающее отражение действительности. Раздражимость, чувствительность, психика.

    Свойства психического отражения действительности: целенаправленность, целостность, субъективность, предметность, Избирательность, переживаемость, регулятивность.

    Сознание и его структура. Отличия сознания человека от психики животных.

    Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

    Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

    Размещено на http://www.allbest.ru/

    Федеральное агентство по образованию

    Федеральное государственное бюджетное образовательное учреждение

    высшего профессионального образования

    Пензенский Государственный Университет

    Кафедра Зоологии и Экологии

    Реферат на тему: «Химическая картина мира. Этапы развития»

    Выполнила:

    Шкутова Олеся Олеговна

    Рецензент:

    канд. биол. наук, доцент - Ильина Н.Л

    1. Основные этапы развития химии

    История химии изучает и описывает сложный процесс накопления специфических знаний, относящихся к изучению свойств и превращений веществ; её можно рассматривать как пограничную область знания, которая связывает явления и процессы, относящиеся к развитию химии, с историей человеческого общества. При изучении истории развития химии возможны два взаимно дополняющих подхода: хронологический и содержательный.

    При хронологическом подходе историю химии принято подразделять на несколько периодов. Следует учитывать, что периодизация истории химии, будучи достаточно условной и относительной, имеет скорее дидактический смысл. При этом на поздних этапах развития науки (в случае химии - уже с начала XIX века) в связи с её дифференциацией неизбежны отступления от хронологического порядка изложения, поскольку приходится отдельно рассматривать развитие каждого из основных разделов науки.

    Как правило, большинство историков химии выделяют следующие основные этапы её развития:

    1. Предалхимический период: до III в. н.э.

    В предалхимическом периоде теоретический и практический аспекты знаний о веществе развивались относительно независимо друг от друга. Происхождение свойств вещества рассматривала античная натурфилософия, практические операции с веществом являлись прерогативой ремесленной химии.

    2. Алхимический период: III - XVII вв.

    Алхимический период, в свою очередь, разделяется на три подпериода - александрийскую (греко-египетскую), арабскую и европейскую алхимию. Алхимический период - это время поисков философского камня, считавшегося необходимым для осуществления трансмутации металлов. В этом периоде происходило зарождение экспериментальной химии и накопление запаса знаний о веществе; алхимическая теория, основанная на античных философских представлениях об элементах, была тесно связана с астрологией и мистикой. Наряду с химико-техническим "златоделием" алхимический период примечателен также и созданием уникальной системы мистической философии.

    3. Период становления (объединения): XVII - XVIII вв.

    В период становления химии как науки произошла её полная рационализация. Химия освободилась от натурфилософских и алхимических взглядов на элементы как на носители определённых качеств. Наряду с расширением практических знаний о веществе начал вырабатываться единый взгляд на химические процессы и в полной мере использоваться экспериментальный метод. Завершившая этот период химическая революция окончательно придала химии вид самостоятельной (хотя и тесно связанной с другими отраслями естествознания) науки, занимающейся экспериментальным изучением состава тел.

    4. Период количественных законов (атомно-молекулярной теории): 1789 - 1860 гг.

    Период количественных законов, ознаменовавшийся открытием главных количественных закономерностей химии - стехиометрических законов, и формированием атомно-молекулярной теории, окончательно завершил превращение химии в точную науку, основанную не только на наблюдении, но и на измерении.

    5. Период классической химии: 1860 г. - конец XIX в.*

    Период классической химии характеризуется стремительным развитием науки: были созданы периодическая система элементов, теория валентности и химического строения молекул, стереохимия, химическая термодинамика и химическая кинетика; блестящих успехов достигли прикладная неорганическая химия и органический синтез. В связи с ростом объёма знаний о веществе и его свойствах началась дифференциация химии - выделение её отдельных ветвей, приобретающих черты самостоятельных наук.

    В большинстве учебников и учебных пособий при рассмотрении периодизации истории химии за периодом количественных законов следует современный период. Однако, по мнению автора, это не совсем корректно, т. к. в начале XX в. теоретические основания химии претерпели существеннейшие изменения. Вторая половина XIX в. является чрезвычайно важным особым этапом развития химических знаний. В этот период окончательно формируется атомно-молекулярная теория и учение о химических элементах, классические разделы химии, создаётся периодический закон, возникают две новых концептуальных системы химии - структурная химия и учение о химическом процессе.

    6. Современный период: с начала XX века по настоящее время

    В начале ХХ века произошла революция в физике: на смену системе знаний о материи, основанной на механике Ньютона, пришли квантовая теория и теория относительности. Установление делимости атома и создание квантовой механики вложили новое содержание в основные понятия химии. Успехи физики в начале XX века позволили понять причины периодичности свойств элементов и их соединений, объяснить природу валентных сил и создать теории химической связи между атомами. Появление принципиально новых физических методов исследования предоставило химикам невиданные ранее возможности для изучения состава, структуры и реакционной способности вещества. Всё это в совокупности обусловило в числе прочих достижений и блестящие успехи биологической химии второй половины XX века - установление строения белков и ДНК, познание механизмов функционирования клеток живого организма.

    2. Концептуальные системы химии

    Содержательный подход к истории химии основывается на изучении того, как изменялись со временем теоретические основы науки. Вследствие изменений в теориях на всём протяжении существования химии постоянно менялось её определение. Химия зарождается как "искусство превращения неблагородных металлов в благородные"; Менделеев в 1882 г. определяет её как "учение об элементах и их соединениях". Определение из современного школьного учебника в свою очередь значительно отличается от менделеевского: "Химия - наука о веществах, их составе, строении, свойствах, взаимных превращениях и законах этих превращений".

    Следует отметить, что изучение структуры науки мало способствует созданию представления о путях развития химии в целом: общепринятое деление химии на разделы основано на целом ряде различных принципов. Деление химии на органическую и неорганическую произведено по различию их предметов (каковое различие, кстати, может быть правильно понято только при историческом рассмотрении). Выделение физической химии основано на её близости к физике, аналитическая химия выделена по признаку используемого метода исследования. В целом общепринятое деление химии на разделы является в значительной степени данью исторической традиции; каждый раздел в той или иной степени пересекается со всеми остальными.

    Основной задачей содержательного подхода к истории химии является, говоря словами Д. И. Менделеева, выделение "неизменного и общего в изменяемом и частном". Таким неизменным и общим для химических знаний всех исторических периодов является цель химии. Именно цель науки - не только теоретический, но и исторический её стержень.

    Целью химии на всех этапах её развития является получение вещества с заданными свойствами. Эта цель, иногда именуемая основной проблемой химии, включает в себя две важнейших задачи - практическую и теоретическую, которые не могут быть решены отдельно друг от друга. Получение вещества с заданными свойствами не может быть осуществлено без выявления способов управления свойствами вещества, или, что то же самое, без понимания причин происхождения и обусловленности свойств вещества. Таким образом, химия есть одновременно и цель и средство, и теория и практика.

    Теоретическая задача химии имеет ограниченное и строго определённое число способов решения, которые задаются структурной иерархией самого вещества, для которого можно выделить следующие уровни организации:

    1. Субатомные частицы.

    2. Атомы химических элементов.

    3. Молекулы химических веществ как унитарные (единые) системы.

    4. Микро- и макроскопические системы реагирующих молекул.

    5. Мегасистемы (Солнечная система, Галактика и т.п.)

    Объектами изучения химии является вещество на 2 - 4 уровнях организации. Исходя из этого, для разрешения проблемы происхождения свойств необходимо рассмотреть зависимость свойств вещества от трёх факторов:

    1. От элементарного состава;

    2. От структуры молекулы вещества;

    3. От организации системы.

    Таким образом, иерархия изучаемых материальных объектов предопределяет иерархию т.н. концептуальных систем химии - относительно самостоятельных систем теорий и методологических принципов, используемых для описания и изучения свойств вещества на каком-либо уровне организации. Обычно выделяют три концептуальных системы, а именно:

    1. Учение о составе;

    2. Структурная химия;

    3. Учение о химическом процессе.

    Учение о составе возникло значительно раньше двух других концептуальных систем - уже в античной натурфилософии появляется понятие об элементах как о составных частях тел. Научная химия воспринимает это учение, но уже основанное на принципиально новых представлениях об элементах, как о неразложимых далее телах (частицах), из которых состоят все "смешанные тела" (соединения). Основной тезис учения о составе состоит в следующем: свойства вещества определяются его составом, т.е. тем, из каких элементов и в каком их соотношении образовано данное вещество. Объектом учения о составе является вещество как совокупность атомов. алхимический атомный молекулярный

    Структурная химия, появившаяся в первой половине XIX-го века, исходит из следующего тезиса: свойства вещества определяются структурой молекулы вещества, т.е. её элементным составом, порядком соединения атомов между собой и их расположением в пространстве. Причиной появления структурной химии стало открытие явлений изомерии и металепсии (см. гл. 5.2.), которые не могли быть объяснены в рамках существующих понятий. Для объяснения этих экспериментальных фактов предлагаются новые теории; объектом структурной химии становится молекула химического вещества как единое целое. Применительно к химической практике появление новой концептуальной системы означало в данном случае ещё и превращение химии из науки преимущественно аналитической в науку синтетическую.

    Учение о химическом процессе, сформировавшееся во второй половине XIX столетия, исходит из посылки, что свойства вещества определяются его составом, структурой и организацией системы, в которой это вещество находится. Учение о процессе выделяется в самостоятельную концепцию химии, когда накапливаются экспериментальные факты, указывающие на то, что законы, управляющие химическими реакциями, не могут быть сведены к составу вещества и структуре его молекулы. Знания состава вещества и структуры молекул часто оказывается недостаточно для предсказания свойств вещества, которые в общем случае обусловлены ещё и природой сореагентов, относительными количествами реагентов, внешними условиями, в которых находится система, наличием в системе веществ, стехиометрически не участвующих в реакции (примесей, катализаторов, растворителя и т.п.). Предметом изучения химии на этом уровне становится вся кинетическая система, в которой состав вещества и структура его молекул представлены лишь как частности. Эмпирические понятия химического сродства и реакционной способности получают теоретическое обоснование в химической термодинамике, химической кинетике и учении о катализе. Создание учения о химическом процессе дало возможность решить важнейшие практические вопросы управления химическими превращениями, внедрить в химическую технологию принципиально новые процессы.

    Иногда выделяется ещё одна концептуальная система - эволюционная химия, представляющая собой, по мнению сторонников такого подхода, учение о высших формах химизма и о химической эволюции материи. Эволюционная химия изучает процессы самоорганизации вещества: от атомов и простейших молекул до живых организмов.

    Таким образом, в рамках содержательного подхода история химии может быть рассмотрена как история возникновения и развития концептуальных систем, каждая из которых представляет собой принципиально новый способ решения основной задачи химии. Следует отметить, что указанные концептуальные системы не противоречат друг другу и не сменяют одна другую, но являются взаимно дополняющими.

    Размещено на Allbest.ru

    ...

    Подобные документы

      Этапы развития химии, эволюция теоретического и практического аспектов знаний о веществе. Основные черты натурфилософии, решение вопроса о делимости материи. Тенденции в средневековой алхимии. Период количественных законов (атомно-молекулярной теории).

      реферат , добавлен 26.01.2015

      От алхимии - к научной химии: путь действительной науки о превращениях вещества. Революция в химии и атомно-молекулярное учение как концептуальное основание современной химии.Экологические проблемы химической компоненты современной цивилизации.

      реферат , добавлен 05.06.2008

      Основные этапы развития химии. Алхимия как феномен средневековой культуры. Возникновение и развитие научной химии. Истоки химии. Лавуазье: революция в химии. Победа атомно-молекулярного учения. Зарождение современной химии и ее проблемы в XXI веке.

      реферат , добавлен 20.11.2006

      Происхождение термина "химия". Основные периоды развития химической науки. Типы наивысшего развития алхимии. Период зарождения научной химии. Открытие основных законов химии. Системный подход в химии. Современный период развития химической науки.

      реферат , добавлен 11.03.2009

      Вклад Ломоносова в развитие химии как науки: обоснование закона сохранения массы вещества, исследование природы газового состояния, изучение явления кристаллизации. Основные направления развития физической химии во второй половине XVIII-XX веках.

      реферат , добавлен 26.08.2014

      Теоретическая основа аналитической химии. Спектральные методы анализа. Взаимосвязь аналитической химии с науками и отраслями промышленности. Значение аналитической химии. Применение точных методов химического анализа. Комплексные соединения металлов.

      реферат , добавлен 24.07.2008

      Краткий обзор концептуальных направлений развития современной химии. Исследование структуры химических соединений. Эффективные и неэффективные столкновения реагирующих частиц. Химическая промышленность и важнейшие экологические проблемы современной химии.

      реферат , добавлен 27.08.2012

      Истоки и развитие химии, ее связь с религией и алхимией. Важнейшие особенности современной химии. Основные структурные уровни химии и ее разделы. Основные принципы и законы химии. Химическая связь и химическая кинетика. Учение о химических процессах.

      реферат , добавлен 30.10.2009

      Процесс зарождения и формирования химии как науки. Химические элементы древности. Главные тайны "трансмутации". От алхимии к научной химии. Теория горения Лавуазье. Развитие корпускулярной теории. Революция в химии. Победа атомно-молекулярного учения.

      реферат , добавлен 20.05.2014

      Законы атомно-молекулярной теории. Стехиометрические соотношения, газовые смеси. Решение стандартных и сложных многовариантных задач; вывод формул химических соединений. Расчет природного минерала, вещества в жидкости, в твердой смеси; концентрация.

    Лекция 10. Система химии.

    1. Основная проблема химии. Концептуальные системы химии.

    2. Учение о составе вещества. Решение проблем химического элемента и химического соединения. Периодическая система элементов.

    3. Структурная химия.

    4. Кинетическая химия.

    5. Эволюционная химия.

    Основная проблема химии как науки. Концептуальные системы химии. Д. И. Менделеев называл химию «наукой о химических элементах и их соединениях». В одних учебниках химию определяют как «науку о веществах и их превращениях», в других - как “науку, изучающую процессы качественного превращения веществ” и т.д. Все эти определения по своему хороши, но они не учитывают тот факт, чтохимия является не просто суммой знаний о веществах, а упорядоченной, постоянно развивающейся системой знаний , имеющей определенное социальное назначение и свое место в ряду других наук.

    Вся история развития химии является закономерным процессом смены способов решения ее основной проблемы. Все химические знания, которые были приобретены в течение многих веко, подчинены единственной главной задаче химии - задаче получения веществ с необходимыми свойствами .

    Итак, основная двуединая проблема химии - это:

    1.Получение веществ с заданными свойствами - производственная задача.

    2. Выявление способов управления свойствами вещества - задача научного исследования.

    По мере развития науки изменялись представления об организации материи, составе веществ, структуре молекул, были получены новые данные о самих химических процессах, что, конечно же, в корне изменяло и способы синтеза новых соединений, и методы исследования их свойств. Существует только четыре способа решения этой проблемы , которые связаны, прежде всего, с наличием всего четырех основных природных факторов, от которых зависят свойства получаемых веществ:

    1. Состав вещества (элементарный, молекулярный).

    2. Структура молекул.

    3. Термодинамические и кинетические условия химической реакции, в процессе которой это вещество получается.

    4. Уровень организации вещества.

    Последовательное появление сначала первого, затем второго, третьего и, наконец, четвертого способов решения основной проблемы химии приводит к последовательному появлению и сосуществованию четырех уровней развития химических знаний, или, как принято теперь их называть, четырех концептуальных систем , находящихся в отношениях иерархии, т. е. субординации. В системе всей химии они являются подсистемами так же как сама химия представляет собой подсистему всего Естествознания в целом. Существование всего четырех способов решения основной проблемы химии нашло свое отражение в делении Системы химии на четыре подсистемы.

    Таким образом, в развитии химии происходит не смена, а строго закономерное, последо­ва­тельное появление концептуальных систем. При этом каждая вновь появляю­щаяся система не отрицает предыдущую, а, наоборот, опирается на нее и включает в себя в преобразованном виде.

    Подводя некоторые итоги, можно дать следующее определение: Система химии -единая целост­ность всех химических знаний, которые появляются и существуют не отдельно друг от друга, а в тесной взаимосвязи, дополняют друг друга и объединяются в концепту­альные системы химических знаний, которые находятся между собой в отношениях иерархии .

    На каждом из четырех исторических этапов добычи химических знаний возникали свои задачи, которые требовали решения.

    Первый этап развития химии - XVII в: Учение о составе вещества. Основные проблемы, стоявшие перед учеными на самом первом этапе - этапеизучения состава вещества :

    1.Проблема химического элемента.

    2.Проблема химического соединения.

    3.Проблема создания новых материалов, в состав которых входят вновь открываемые химические элементы.

    Действенный способ решения проблемы происхождения свойств вещества появился во второй половине XVII в. в работах английского ученогоРоберта Бойля . Его исследования показали, что качества и свойства тел не имеют абсолютного характера и зависят от того, из каких материальных элементов эти тела составлены.

    Бойль тем самым способствовал решению основной проблемы химии посредством установления взаимосвязи:

    СОСТАВ ВЕЩЕСТВА ---------> СВОЙСТВА ВЕЩЕСТВА

    Этот способ положил начало учению о составе веществ, которое явилось первым уровнем научных химических знаний . Вплоть до первой половины XIX в. учение о составе веществ представляло собой всю тогдашнюю химию.

    Решение проблемы химического элемента. Исторические корни решения этой проблемы уходят в глубокую древность. В Древней Греции возникают первые атомистические теории о строении мира и в противовес им - представления об элементах; свойствах и элементах, - качествах, подхваченных позже ложными учениями алхимиков.

    Р.Бойль положил начало современному представлению о химическом элементе как о «простом» теле или как о пределе химического разложения вещества. Химики, стремясь получить «простые вещества», пользовались при этом самым распространенным в то время методом - прокаливанием «сложных веществ». Прокаливание же приводило к окалине, которую и принимали за новый элемент. Соответственно, металлы - железо, например, принимали за сложные тела, состоящие из соответствующего элемента и универсального «невесомого тела» -флогистона (флогистос - греч. зажженный). Теория флогистона (ложная по своей сути) была первой научной химической теорией и послужила толчком к множеству исследований.

    В 1680-1760 гг. появились точные количественные методы анализа вещества, а они, в свою очередь, способствовали открытию истинных химических элементов. В это время были открытыфосфор, кобальт, никель, водород, фтор, азот, хлор и марганец .

    В 1772-1776 гг. одновременно в Швеции, Англии и Франции был открыт кислород . Во Франции его первооткрывателем был замечательный химикА.Л. Лавуазье (1743-1794 гг.). Он установил роль кислорода в образовании кислот, оксидов и воды, опроверг теорию флогистона и создал принципиально новую теорию химии. Ему принадлежала также первая попытка систематизации химических элементов, которая в дальнейшем была исправлена Д. И. Менделеевым.

    Периодический закон и периодическая система химических элементов Д.И. Менделеева. Русский химик Д. И. Менделеев сделал это открытие в 1869 г., совершив революцию в естествознании, т.к. оно не просто устанавливало связь между химическими и физическими свойствами отдельных элементов, но и взаимную связь между всеми химическими элементами. Группы и ряды периодической системы стали надежной основой для выявления семейств родственных элементов.

    N . B ! Первым практическим применением периодического закона было исправление величин валентности и атомных весов некоторых элементов, для которых в то время принимались неверные значения. Это относилось, в частности, к индию, церию, другим редкоземельным элементам: торию, урану.

    Основным принципом, по которому Менделеев строил свою таблицу, было размещение элементов в порядке возрастания их атомных весов. Основываясь на валентности и химических свойствах элементов, Менделеев расположил все элементы по 8 группам, в каждой из которых размещались элементы со сходными свойствами.

    Причина периодических изменений физических и химических свойств элементов кроется в периодичности строения электронных оболочек атомов .

    N . B ! В начале каждого периода валентные электроны находятся на s-подуровнях соответствующих уровней энергии в атомах. Затем в малых периодах происходит заполнение электронами s и p-подуровней, а в больших периодах также и d-подуровней. В VI и VII периодах, кроме того, наблюдается заполнение f-подуровней. Атомы инертных газов содержат наружные электроны всегда на полностью сформированных s и p-подуровнях. Таким образом, химические элементы одинаковых подгрупп периодической системы характеризуются аналогичным строением электронных оболочек атома.

    Одними из наиболее важных свойств атомов, связанных со строением их электронных оболочек, являются эффективные атомные и ионные радиусы. Оказывается, что они также периодически изменяются в зависимости от величины атомного номера элемента. Для элементов одного периода по мере увеличения порядкового номера сначала наблюдается уменьшение атомных радиусов, а затем, к концу периода, их увеличение. Это необычное физическое свойство находит простое объяснение, основанное на знании строения внешней электронной оболочки атомов, принадлежащих одному периоду: все дело в электростатике .

    Но самое главное заключалось в том, что таблица Менделеева не просто давала объяснение физическим свойствам элементов, а ставила им в соответствие и их химические свойства. Основным постулатом таблицы являлось то, что валентность химического элемента определяется числом электронов на внешней электронной оболочке (эти электроны так и называются -валентные электроны ).

    Важная роль периодического закона заключается в том, что в нем устанавливается связь между строением атомов и влиянием этого строения на физические и химические свойства элементов.

    Решение проблемы химического соединения. Начало решению этой проблемы было положено благодаря работам французского химикаЖ. Пруста , который в 1801-1808 гг. установилзакон постоянства состава , согласнокоторомулюбое индивидуальное химическое соединение обладает строго определенным, неизменным составом - прочным притяжением составных частей (атомов) и тем самым отличается от смесей.

    Теоретическое обоснование закона Пруста было дано англичанином Дж. Дальтоном , являющимся автором другого основополагающего закона в учении о составе веществ -закона кратных отношений . Он показал, что все вещества состоят из молекул, а все молекулы, в свою очередь, - из атомов, и что состав любого вещества можно представить себе как простую формулу типа АВ, АВ2, А2 В3 и т.д., где символы А и В обозначают названия двух атомов, из которых состоит молекула. Согласно этому закону эквивалентов «составные части молекулы» - атомы А и В могут замещаться на другие атомы - С и D, например, согласно реакциям:

    АВ + С --> АС + В или

    А2В3 + 3D ---> А2D3 + 3В

    Закон кратных отношений Дальтона (1803 г.) гласит:Если определенное количество одного элемента вступает в соединение с другим элементом в нескольких весовых отношениях, то количества второго элемента относятся между собой как целые числа.

    Молекулярная теория строения вещества позволила по-новому взглянуть на процессы, происходящие в газовой фазе, и дала начало новой науке, стоящей на стыке химии и физики - молекулярной физике . Настоящей сенсацией стало откры­тиезакона Авогадро в 1811г.Итальянский ученыйАмадео Авогадро (1776-1856 гг.) установил, чтопри одинаковых физических условиях (давлении и температуре) равные объемы различных газов содержат равное число молекул . Другими словами, это означает, чтограмм-молекула любого газа при одинаковой температуре и давлении занимает один и тот же объем.

    Однако, развитие химии и изучение все большего числа соединений приводили химиков к мысли, что наряду с веществами, имеющими определенный состав , существуют еще и соединенияпеременного состава - и это явилось причиной пересмотра представлений о молекуле в целом. Молекулой, как и прежде, продолжали называть наименьшую частичку вещества, способную определять его свойства и существовать самостоятельно, но теперь к молекулам стали относить и такие необычные квантово-механические системы, такие как ионные, атомные и металлическиемонокристаллы , а такжеполимеры , образованные за счет водородных связей.

    В результате применения физических методов исследования вещества стало ясно, что свойства реального тела определяются не столько тем, постоянен или не постоянен состав химического соединения, а скорее физической природой химизма , т.е. природой тех сил, которые заставляют несколько атомов объединяться в одну молекулу. Поэтому теперь подхимическим соединением понимаютопределенное вещество, состоящее из одного или нескольких химических элементов, атомы которых за счет взаимодействия друг с другом объединены в частицу, обладающую устойчивой структурой - молекулу , комплекс, монокристалл или иной агрегат. Это более широкое понятие, чем понятие «сложное вещество». Действительно, ведь всем известны химические соединения, состоящие не из разных, а из одинаковых элементов. Это молекулы водорода, кислорода, хлора, графита, алмаза и т.д.

    Особое положение в ряду молекулярных частиц занимают макромоле­кулы полимеров . Они содержат большое число повторяющихся, химически связанных друг с другом в единое целое структурных единиц -фрагментов мономерных молекул , обладающих одинаковыми химическими свойствами.

    Дальнейшее усложнение химической организации материи идет по пути образования более сложной совокупности взаимодействующих атомных и молекулярных частиц, так называемых молекулярных ассоциатов и агрегатов , а также их комбинаций. При образовании агрегатов изменяется фазовое состояние системы, чего не происходит при образовании ассоциатов.Ф азовое состояние -это основное физическое состояние, в котором может существовать любое вещество (газ, жидкость, твердое тело).

    Проблема создания новых материалов . Природа щедро «разбросала» свои материальные ресурсы по всей планете. Но вот какую странную закономерность обнаружили ученые: оказывается, чаще всего в своей деятельности человек использует те вещества, запасы которых в природе ограничены.

    Поэтому в настоящее время перед учеными-химиками стоят три задачи:

    1. Приведение в соответствие практики использования химических элементов в производстве с их реальными ресурсами в природе.

    2. Последовательная замена металлов различными видами керамики.

    3. Расширение производства элементоорганических соединений на базе органического синтеза. Элементоорганические соединени я -это соединения, в состав которых входят как органические элементы (углерод, водород, сера, азот, кислород), так и производ­ные ряда других химических элементов: кремния, фтора, магния, кальция, цинка, натрия, лития и т.д.

    Предлагается сосредоточить внимание на увеличении использования на производстве таких элементов как алюминий, магний, кальций, кремний. В природе эти элементы встречаются довольно часто, и их добыча не составляет особого труда. Кроме того, использование этих веществ, составленных из наиболее часто встречающихся природных элементов, приведет к меньшему загрязнению окружающей среды отходами, - проблеме, так остро ощущаемой всеми в настоящее время.

    Возросшая необходимость замены металлов керамикой вызвана тем, что производство керамики легче и экономически выгоднее и, кроме того, на некоторых производствах она просто не может быть заменена металлами. Химики научились получать огнеупорную, термостойкую, химически стойкую, высокотвердую керамику, а также керамику для электротехники. В последнее время было обнаружено удивительное свойство некоторых керамических изделий обладать высокотемпера­турной сверхпроводимостью, т.е. сверхпроводимостью при температурах выше температуры кипения азота. Открытию этого уникального физического свойства способствовали работы химиков по созданию новой керамики на основе комплексов с барием, лантаном и медью, взятых в едином комплексе.

    Химия элементооргани­ческих материалов с применением крем­ния (кремнийорганическая химия) лежит в основе создания производства многих полимеров, обладающих ценными свойствами и незаменимых в авиации и энергети­ке. А фторорганичес­кие соединения обладают исключительной устойчивос­тью (даже в кислотах и щелочах) особой поверхностной активностью и поэтому могут переносить, например, кислород как молекула гемоглобина! Фторорганичес­кие соединения активно используются в медицине для создания всевозможных покрытий и т.д.

    Решение практических задач, стоящих перед химиками в настоящее время сопряжено с синтезом новых веществ и анализом их химического состава. Поэтому, как и много лет тому назад, проблема состава веществ остается в химии по-прежнему актуальной.

    Второй этап развития химии как науки - XIX в: Структурная химия.

    В 1820 - 1830 гг. мануфактурная стадия производства с ее ручной техникой сменилась фабричной стадией. На производстве появились новые машины, возникла потребность в поиске новых сырьевых материалов для использования в промышленности. В химическом производстве стала преобладать переработка огромных масс веществ растительного и животного происхождения, качественное разнообразие которых было потрясающе велико, а состав однообразен: углерод, водород, кислород, сера, азот, фосфор. Значит, свойства веществ, определяется не одним только составом - сделали вывод химики.

    Химики выяснили, что свойства веществ, а значит и их качествен­ное разнообразие обусловливается не только их составом, но и структурой молекул. Если знание состава вещества отвечает на вопрос о том, из каких химических элементов состоит молекула данного вещества , тознание структуры вещества дает представление о пространственном расположении атомов в этой самой молекуле.

    Вместе с тем стало ясно, что не все атомы, входящие в состав моле­кулы данного вещества одинаково хорошо вступают во взаимодействие с атомами других молекул. Каждую молекулу можно условно подразделить на несколько так называемых функциональных или реактивных блоков, в которые входят группы атомов, просто отдельные атомы или даже отдельные химические связи. Каждая из таких структур обладает своей уникальной способностью вступать в химические реакции, т.е. своей реакционной способностью .

    Второй уровень развития химических знаний получил условное название структурная химия .Главным достижением этого этапа можно было назвать установление связи между структурой молекулы и функциональной активностью соединения:

    СТРУКТУРА МОЛЕКУЛЫ ---> ФУНКЦИЯ (РЕАКЦИОННАЯ СПОСОБНОСТЬ)

    Таким образом, познание структуры молекул перевело химию на второй уровень развития химических знаний и способствовало превращению химии из преимущественно аналитической науки в наукусинтетическую . Возникла такжетехнология органических веществ , которой ранее не было.

    Эволюция понятия «структура» в химии. Согласно теории, выдвинутойДж. Дальтоном, любое химическое вещество представляет собой совокупность молекул, обладающих строго определенным качественным и количественным составом, т. е. состоящих из определенного количества атомов одного, двух или трех химических элементов. Теория строения вещества Дж. Дальтона отвечала на вопрос:как можно отличить индивидуальное вещество от смесей веществ , но она не давала ответа на множество других вопросов: каким образом объединяются атомы в молекулу, существует ли какая-то упорядоченность в расположении атомов в молекуле или они объединены как попало, случайно?

    На эти вопросы попытался дать ответ шведский химик И.Я. Берцелиус , живший в первой половине XIX в. И. Я. Берцелиус полагал, что молекула представляет собой не простое нагромождение атомов, а определенную упорядоченную структуру атомов, связанных между собой электростатическими силами. Он предложил новуюмодель атома в виде электрического диполя . И.Я. Берцелиус выдвинул гипотезу, согласно которойвсе атомы разных химических элементов обладают различной электроотрицательностью и расположил их в своеобразный ряд по мере ее увеличения .

    N . B ! И.Я. Берцелиус на основании определения данного им процентного состава многих веществ и поиска элементарных стехиометрических закономернос­тей, а также изучения разложения сложных веществ в растворе под действием электрического тока, задался вопросом: что влияет на знак и величину электрического заряда конкретного вещества? Почему существуют электроположительные и электроотрицательные вещества? В чем различие в строении молекул кислоты и щелочи или щелочи и нейтральной соли?

    В 1840 г. в работах французского ученого Ш. Жерара было показано, что структуры И. Я. Берцелиуса справедливы не во всех случаях: есть масса веществ, молекулы которых невозможно разложить на отдельные атомы под действием электрического тока, они представляют как бы единую целую систему и именно такуюнеделимую систему взаимосвязанных друг с другом атомов Ш. Жерар и предлагал называтьмолекулой . Он разработал теорию типов органических соединений.

    В 1857 г. немецкий химик А. Кекуле обнародовал свои наблюдения о свойствах отдельных элементов, которые могут замещать атомы водорода в ряде соединений. Он пришел к выводу о том, что некоторые из них могут замещать три атома водорода, другие же - только два или даже один. А.Кекуле также установил, что «один атом углерода... эквивалентен четырем атомам водорода». Это были основополагающие положениятеории валентности веществ .

    А. Кекуле ввел в обиход новый химический термин сродство , который и обозначал количество атомов водорода, которое может заместить данный химический элемент. Он приписал всем элементам соответственно три, две или одну единицу сродства. Углерод же находился при этом в необычном положении - его атом обладал четырьмя единицами сродства.Число единиц сродства, присущее данному химическому элементу ученый назвал валентностью атома .

    При объединении атомов в молекулу происходит замыкание свободных единиц сродства.

    Понятие структура молекулы с легкой руки А.Кекуле свелось к построению наглядных формульных схем, которые служили химикам руководством в их практической работе, конкретным указанием на то, какие исходные вещества следует брать для того, чтобы получить необходимый химический продукт.

    N . B ! Схемы А. Кекуле, однако, не всегда можно было осуществить на практике: хорошо продуманная (или придуманная) реакция не хотела протекать согласно красивой схеме. Это происходило потому, что формульный схематизм не учитывал реакционную способность веществ, вступающих в химическое взаимодействие друг с другом.

    Ответы на волнующие практических химиков вопросы дала теория химического строения русского ученого Александра Михайловича Бутлерова. Бутлеров, так же как и Кекуле, признавал, что образование молекул из атомов происходит за счет замыкания свободных единиц сродства, но одновременно с этим он указывал на важность того, с каким «напряжением, большей или меньшей энергией (это сродство) связывает вещества между собой».

    Теория А. М. Бутлерова стала для химиков руководством в их практической деятельности. Позже она нашла свое подтверждение и физическое обоснование в квантовой механике.

    Химическая связь. Химической связью называется взаимодействие между атомами элементов, обуславливающее их соединение в молекулы и кристаллы.

    Тип связи определяется характером физического взаимодействия атомно-молекулярных частиц друг с другом. Фундаментальную теорию химических связей создал в 30-е годы ХХ века американский химикЛайнус Полинг .

    В настоящее время понятие «химическая связь» стало более широким. Теперь подхимической связью понимается такойвид взаимодействия не просто между отдельными атомами, а иногда и между атомно-молекулярными частицами, который обусловлен совместным использованием их электронов . При этом имеется в виду, что такое обобществление электронов взаимодействую­щими частицами может изменяться в широких пределах. Существуютковалентная (полярная, неполярная), водородная и ионная (ионно-ковалентная) связи, а также металлическая связь .

    Ионная связь образуется в том случае, когда, объединяясь в одну молекулу, один из атомов теряет электроны со своей внешней оболочки (катион), а другой их приобретает (анион) противоположно заряженные ионы притягиваются друг к другу, образуя прочные связи. Ионные соединения – как правило, твердые вещества, имеющие очень высокую температуру плавления (соли, щелочи, напр., поваренная соль).

    Ковалентная связь образуется в результате электронной пары, принадлежащей одновременно обоим атомам, создающим молекулу вещества. Поскольку такие молекулы удерживаются слабыми силами, они неустойчивы и существуют в виде жидкостей или газов с низкими температурами плавления и кипения (кислород, бутан).

    Водородная связь обусловлена поляризацией ковалентных связей , когда совместные электроны большую часть времени находятся у атома элемента, связанного с атомом водорода. В результате такой атом получает небольшой отрицательный заряд, что делает соединения с водородными связями более крепкими по сравнению с другими ковалентными соединениями (вода).

    Металлические связи обусловлены свободным перемещением электронов внешних оболочек атомов металлов . Атомы в металлах выстраиваются в точно подогнанные друг к другу ряды, удерживаемые вместе электронным полем.

    Благодаря развитию структурных представлений в 1860-1880 гг. в химии появился термин органический синтез , обозначавший не только действия по получению новых органических веществ, но и целую область науки, названную так в противоположность всеобщему увлечению анализом природных веществ.

    Итак, под валентностью атомных частиц понимается ихсвойство вступать в химическое взаимодействие, количественной мерой которого является суммарное число неспаренных электронов, неподеленных электронных пар и вакантных орбиталей, участвующих в образовании химических связей. Валентность атомной частички не является постоянной величиной и может изменяться от единицы до некоторого максимального значения в зависимости от природы частиц-партнеров и условий образования химического соединения.

    Под понятием структура понимаютустойчивую упорядоченность качественно неизменной системы.

    Под молекулярной структурой понимаютсочетание ограниченного числа атомов, имеющих закономерное расположение в пространстве и связанных друг с другом химической связью с помощью валентных электронов . Молекулярную структуру подразделяют наатомную (геометрическую) иэлектронную .

    В первом приближенииподатомной структурой следует пониматьустойчивую совокупность ядра и окружающих его электронов, находящихся в электромагнитном взаимодействии друг с другом.

    Третий этап развития химии как науки - первая половина XX в: Учение о химических процессах - кинетическая химия.

    В связи с развитием техники и именно в это времяхимия становится наукой уже не только и не столько о веществах, сколько наукой о процессах и механизмах изменения веществ.

    Интенсивное развитие автомобильной промышленности, авиации, энергетики и приборостроения в начале нашего века требовало качественного топлива для работы моторов. Специальные высокопрочные каучуки для шин автомобилей, пластмассы для облегчения их веса, всевозможные полимеры и полупроводники,- все это было необходимо получать в больших количествах, но, увы, развитие химических навыков не соответствовало запросам производства.

    Дело в том, что сама по себе химическая реакция - вещь достаточно капризная. Взаимодействие веществ в ходе реакции приводит к изменению состава вещества. Для этого должна быть разрушена одна комбинация атомов и создана другая. Для разрушения старого соединения необходимо затратить энергию. Образование нового соединения, как правило, сопровождается выделением энергии.

    Химические реакции описываются уравнениями, основанными на законе сохранения вещества . Согласно этому закону, полная масса веществ, вступивших в реакцию, должна точно соответствовать массе образовавшихся веществ. Для расчетов массы используется счетная единица – моль, содержит одинаковое количество частиц (6 10 23 , число Авогадро)

    Учение о химических процессах. Методы управления химическим процессом. Учение о химических процессах - это такая область науки, в которой существует наиболее глубокое взаимопроникновение физики, химии и биологии. В основе этого учения находятсяхимическая термодинамика и кинетика , поэтому все это учение о химических процессах в равной степени относится как к химии, так и к физике.

    Существует большое количество решаемых проблем в связи с созданием учения о химических процессах. Подробное их описание можно найти в любом современном учебнике по физической химии. Но, пожалуй, одной из самых основных проблем являлась задача создания методов, позволяющих управлять химическими процессами.

    В самом общем виде все методы управления можно подразделить на две большие группы: термодинамические и кинетические. Первая группа - термодинамические методы - этометоды, влияющие на смещение химического равновесия реакции ; вторая группа - кинетические методы -это методы, влияющие на скорость протекания реакции.

    В 1884 г. появляется книга выдающегося голландского химика Я. Вант-Гоффа , в которой он обосновал законы, устанавливающие зависимость направления химической реакции от изменения температуры и теплового эффекта реакции. В том же году французский химикА. Ле-Шателье сформулировал свой знаменитыйпринцип подвижного равновесия , вооружив химиков методами смещения равновесия в сторону образования продуктов реакции. Основными управляющими рычагами в данном случае выступалитемпература, давление и концентрация реагирующих веществ. Поэтому эти методы управления и получили свое название -термодинамические .

    Вспомним, что любая химическая реакция обратима. Например, реакция типа:

    AB + CD <=> AC + BD

    Обратимость реакций служит основанием равновесия между прямой и обратной реакциями. На практике равновесие смещается в ту или иную сторону. Для того, чтобы химическая реакция пошла в сторону увеличения продуктов реакции АС и BD, необходимо либо увеличить концентрацию веществ AB и CD, либо изменить температуру или давление.

    Нотермодинамические методы позволяли управлять тольконаправлением реакций, а не их скоростями.Управлением скоростью химических реакций в зависимости от различных факторов занимается специальная наука -химическая кинетика . На скорость химической реакции может влиять очень многое, даже стенки сосуда, в котором протекает реакция.

    Третий способ решения основной проблемы, учитывающий всю сложность организации химических процессов и обеспечивший экономически приемлемую производительность этих процессов в химических реакторах, может быть представлен схемой:

    ОРГАНИЗАЦИЯ ХИМИЧЕСКОГО ---> ПРОИЗВОДИТЕЛЬНОСТЬ

    ПРОЦЕССА В РЕАКТОРЕ РЕАКТОРА

    Катализ и химия экстремальных состояний. В 1812 г. русским академикомК.С.Кирхгофом было открыто явлениехимического катализа .Катализ представляет собой наиболее общий и распространенный способ проведения химических реакций, особенность которого состоит в активации молекул реагента при их контакте с катализатором . При этом происходит как бы «расслабление» химических связей в исходном веществе, «растаскивание» его на отдельные части, которые затем легче вступают во взаимодействие друг с другом.

    Нестационарная кинетика. Развитие представлений об эволюции систем. В 1970 годы было обнаружено много химических систем, в которых использовались катализаторы, в которых с течением времени все происходило наоборот, - процесс не стабилизировался, как обычно, а становилсянестационар­ным . Было открыто несколько типовавтоколебательных химических реакций , в которых с течением времени происходят периодические изменения выхода продуктов реакции. Другими словами, необходимый продукт химической реакции то выделяется в большом количестве, то, напротив, реакция почти не идет или даже изменяет свое направление, а затем все это повторяется вновь. Оказалось, что в ряде случаев общее количество вещества, получаемое в ходе такойнестабильной химической реакции, даже превышает то количество вещества, которое выделялось бы в ходе реакции, если бы она проходиластационарно или, т.е. имела быпостоянную скорость .

    Изучение нестационарной кинетики началось недавно. Но уже есть и практические результаты. С ее помощью были исследованы некоторые энергетически сопряженные процессы, т.е. такие химические процессы, в которых принимают участие сразу несколько реакций, обменивающихся энергией друг с другом. Нестационарные химические процессы были обнаружены и в живой природе.

    Четвертый этап развития химии как науки - вторая половина XX в: Эволюционная химия. В 1960 - 1979 г. г. появился новый способ решения основной проблемы химии, который получил названиеэволюционная химия . В основе этого способа лежит принцип использования в процессах получения химических продуктов таких условий, которые приводят к самосовершенствованию катализаторов химических реакций, т.е. к самоорганизации химических систем.

    Таким образом, четвертый этап развития химии, который продолжает­ся и до настоящего времени,устанавливает связь самоорганизации системы реагентов с поведением этой системы:

    САМООРГАНИЗАЦИЯ -----> ПОВЕДЕНИЕ СИСТЕМЫ РЕАГЕНТОВ СИСТЕМЫ РЕАГЕНТОВ

    Эволюционные проблемы химии. Начало эволюционной химии связывают с 1950-1960 гг. Подэволюционными проблемами следует пониматьпроблемы синтеза новых сложных, высокоорганизо­ванных соединений без участия человека.

    Теория химической эволюции и биогенеза А.П.Руденко. В 1960-х годах были отмечены случаи самосовершенствования некоторых химических катализаторов в ходе химической реакции. Обычные катализаторы со временем (как и все на свете) стареют и изнашиваются. Но химикам удалось обнаружить такие катализаторы, которые не только не старели, а, напротив, «молодели» с каждой химической реакцией. Ответ на этот вопрос попыталась дать теория химической эволюции и биогенеза, предложенная ученым мира в 1964 г. русским профессоромА. П. Руденко . Сущность этой теории состоит в том, что химическая эволюция представляет собойсаморазвитие каталитических систем . В ходе реакции происходит отбор тех каталитических центров, которые обладают наибольшей активностью (основной закон химической эволюции):Эволюционные изменения катализатора происходят в том направлении, где проявляется его максимальная активность. Саморазвитие систем происходит за счет постоянного поглощения катализаторами потока энергии, которая выделяется в ходе самой химической реакции, поэтому эволюционируют каталитические системы с большей энергией. Такие системы разрушают химическое равновесие и в результате являются инструментом отбора наиболее устойчивых эволюционных изменений в катализаторе.

    Изучение строения и функционирования ферментов в живой природе - это такая ступень химического познания, которая откроет в дальнейшем создание принципиально новых химических технологий.

    Несмотря на то, что химия в настоящее время все еще далека от совершенства, которым обладает «лаборатория живого организма», пути к этому идеалу намечены. Сегодня химики пришли к выводу, что используя те же принципы, на которыхпостроена химия живых организмов, в будущем (не повторяя в точности природу) можно будет «построить» принципиально новую химию, новое управление химическими процессами - так, как это происходит в любой живой клетке. Химики надеются получить катализаторы нового поколения, которые бы позволили создавать, например, необычные преобразователи солнечного света.

    Ученые стремятся создавать промышленные аналоги химических процессов, происходящих в живой природе. Они исследуют опыт работы биохимических катализаторов и создают такие катализаторы в лабораторных условиях. Особой сложностью работы с биохимическими катализаторами - ферментами , является то обстоятельство, что они очень неустойчивы при хранении и быстро портятся, теряя свою активность. Поэтому химики долгое время работали над созданием стабилизации ферментови в результате научились получать так называемыеиммобилизованные ферменты - этоферменты, выделенные из живого организма и прикреплен­ные к твердой поверхности путем их адсорбции . Такие биокатализаторы очень стабильны и устойчивы в химических реакциях и их можно использовать многократно. Основоположникомхимии иммобилизованных систем является русский химикИ. В. Березин.

      Среди перспективных направлений химии XXIвека особый интерес вызывают:

      Химия мозга

      Макрохимия Земли

      Когерентная химия

      Спиновая химия и химическая радиофизика

      Химия экстремальных состояний

      Холодный синтез

      Физика химических реакций.