Значение периодического закона. Научное значение периодического закона Значение периодической системы элементов

    Предпосылкой открытия Периодического закона послужили решения международного съезда химиков в городе Карлсруэ в 1860 году, когда окончательно утвердилось атомно - молекулярное учение были предприняты первые единые определения понятий молекулы и атома, а также атомного веса, который мы теперь называем относительной атомной массой.

    Д. И. Менделеев в своём открытии опирался на чётко сформулированные исходные положения:

    Общее неизменное свойство атомов всех химических элементов - их атомная масса;

    Свойства элементов зависят от их атомных масс;

    Форма этой зависимости - периодическая.

    Рассмотренные выше предпосылки можно назвать объективными, то есть не зависящими от личности ученого, так как они были обусловлены историческим развитием химии как науки.

    III Периодический закон и Периодическая система химических элементов.

    Открытие Менделеевым Периодического закона.

    Первый вариант Периодической таблицы элементов был опубликован Д. И. Менделеевым в 1869 году - задолго до того, как было изучено строение атома. В это время Менделеев преподавал химию в Петербургском университете. Готовясь к лекциям, собирая материал для своего учебника "Основы химии", Д. И. Менделеев раздумывал над тем, как систематизировать материал таким образом, чтобы сведения о химических свойствах элементов не выглядели набором разрозненных фактов.

    Ориентиром в этой работе Д. И. Менделееву послужили атомные массы (атомные веса) элементов. После Всемирного конгресса химиков в 1860 году, в работе которого участвовал и Д. И. Менделеев, проблема правильного определения атомных весов была постоянно в центре внимания многих ведущих химиков мира, в том числе и Д. И. Менделеева. Располагая элементы в порядке возрастания их атомных весов, Д. И. Менделеев обнаружил фундаментальный закон природы, который теперь известен как Периодический закон:

    Свойства элементов периодически изменяются в соответствии с их атомным весом.

    Приведенная формулировка нисколько не противоречит современной, в которой понятие "атомный вес" заменено понятием "заряд ядра". Ядро состоит из протонов и нейтронов. Число протонов и нейтронов в ядрах большинства элементов примерно одинаково, поэтому атомный вес увеличивается примерно так же, как увеличивается число протонов в ядре (заряд ядра Z).

    Принципиальная новизна Периодического закона заключалась в следующем:

    1. Устанавливалась связь между НЕСХОДНЫМИ по своим свойствам элементами. Эта связь заключается в том, что свойства элементов плавно и примерно одинаково изменяются с возрастанием их атомного веса, а затем эти изменения ПЕРИОДИЧЕСКИ ПОВТОРЯЮТСЯ.

    2. В тех случаях, когда создавалось впечатление, что в последовательности изменения свойств элементов не хватает какого-нибудь звена, в Периодической таблице предусматривались ПРОБЕЛЫ, которые надо было заполнить еще не открытыми элементами.

    Во всех предыдущих попытках определить взаимосвязь между элементами другие исследователи стремились создать законченную картину, в которой не было места еще не открытым элементам. Наоборот, Д. И. Менделеев считал важнейшей частью своей Периодической таблицы те ее клеточки, которые оставались пока пустыми. Это давало возможность предсказать существование еще неизвестных элементов.

    Достойно восхищения, что свое открытие Д. И. Менделеев сделал в то время, когда атомные веса многих элементов были определены весьма приблизительно, а самих элементов было известно всего 63 - то есть чуть больше половины известных нам сегодня.

    Глубокое знание химических свойств различных элементов позволило Менделееву не только указать на еще не открытые элементы, но и точно предсказать их свойства! Д. И. Менделеев точно предсказал свойства элемента, названного им "эка-силицием". Спустя 16 лет этот элемент действительно был открыт немецким химиком Винклером и назван германием.

    Сопоставление свойств, предсказанных Д. И. Менделеевым для еще не открытого элемента "эка-силиция" со свойствами элемента германия (Ge). В современной Периодической таблице германий занимает место "эка-силиция".

    Свойство

    Предсказано Д. И. Менделеевым для "эка-силиция" в 1870 году

    Определено для германия Ge, открытого в 1886 году

    Цвет, внешний вид

    коричневый

    светло-коричневый

    Атомный вес

    72,59

    Плотность (г/см3)

    5,5

    5,35

    Формула оксида

    ХО2

    GeO2

    Формула хлорида

    XCl4

    GeCl4

    Плотность хлорида (г/см3)

    1,9

    1,84

    Точно так же блестяще подтвердились предсказанные Д. И. Менделеевым свойства "эка-алюминия" (элемент галлий Ga, открыт в 1875 году) и "эка-бора" (открытый в 1879 году элемент скандий Sc).

    После этого ученым всего мира стало ясно, что Периодическая таблица Д. И. Менделеева не просто систематизирует элементы, а является графическим выражением фундаментального закона природы - Периодического закона.

    Структура Периодической системы.

    На основе Периодического закона Д.И. Менделеев создал Периодическую систему химических элементов, которая состояла из 7 периодов и 8 групп (короткопериодный вариант таблицы). В настоящее время чаще используется длиннопериодный вариант Периодической системы (7 периодов, 8 групп, отдельно показаны элементы - лантаноиды и актиноиды).

    Периоды - это горизонтальные ряды таблицы, они подразделяются на малые и большие. В малых периодах находится 2 элемента (1-й период) или 8 элементов (2-й, 3-й периоды), в больших периодах - 18 элементов (4-й, 5-й периоды) или 32 элемента (6-й, 7-й период). Каждый период начинается с типичного металла, а заканчивается неметаллом (галогеном) и благородным газом.

    Группы - это вертикальные последовательности элементов, они нумеруется римской цифрой от I до VIII и русскими буквами А и Б. Короткопериодный вариант Периодической системы включал подгруппы элементов (главную и побочную).

    Подгруппа - это совокупность элементов, являющихся безусловными химическими аналогами; часто элементы подгруппы обладают высшей степенью окисления, отвечающей номеру группы.

    В А-группах химические свойства элементов могут меняться в широком диапазоне от неметаллических к металлическим (например, в главной подгруппе V группы азот - неметалл, а висмут - металл).

    В Периодической системе типичные металлы расположены в IА группе (Li-Fr), IIА (Mg-Ra) и IIIА (In, Tl). Неметаллы расположены в группах VIIА (F-Al), VIА (O-Te), VА (N-As), IVА (C, Si) и IIIА (B). Некоторые элементы А-групп (бериллий Ве, алюминий Al, германий Ge, сурьма Sb, полоний Po и другие), а также многие элементы Б-групп проявляют и металлические, и неметаллические свойства (явление амфотерности).

    Для некоторых групп применяют групповые названия: IА (Li-Fr) - щелочные металлы, IIА (Ca-Ra) - щелочноземельные металлы, VIА (O-Po) - халькогены, VIIА (F-At) - галогены, VIIIА (He-Rn) - благородные газы. Форма Периодической системы, которую предложил Д.И. Менделеева, называлась короткопериодной или классической. В настоящее время больше используется другая форма Периодической системы - длиннопериодная.

    Периодический закон Д.И. Менделеева и Периодическая система химических элементов стали основой современной химии. Относительные атомные массы приведены по Международной таблице 1983 года. Для элементов 104-108 в квадратных скобках приведены массовые числа наиболее долгоживущих изотопов. Названия и символы элементов, приведенные в круглых скобках, не являются общепринятыми.

    IV Периодический закон и строение атома.

    Основные сведения строения атомов.

    В конце XIX - начале XX века физики доказали, что атом является сложной частицей и состоит из более простых (элементарных) частиц. Были обнаружены:

    катодные лучи (английский физик Дж. Дж. Томсон, 1897 г.), частицы которых получили название электроны e− (несут единичный отрицательный заряд);

    естественная радиоактивность элементов (французские ученые - радиохимики А. Беккерель и М. Склодовская-Кюри, физик Пьер Кюри, 1896 г.) и существование α-частиц (ядер гелия 4He2+);

    наличие в центре атома положительно заряженного ядра (английский физик и радиохимик Э. Резерфорд, 1911 г.);

    искусственное превращение одного элемента в другой, например азота в кислород (Э. Резерфорд, 1919 г.). Из ядра атома одного элемента (азота - в опыте Резерфорда) при соударении с α-частицей образовывалось ядро атома другого элемента (кислорода) и новая частица, несущая единичный положительный заряд и названная протоном (p+, ядро 1H)

    наличие в ядре атома электронейтральных частиц - нейтронов n0 (английский физик Дж. Чедвик, 1932 г.).

    В результате проведенных исследований было установлено, что в атоме каждого элемента (кроме 1H) присутствуют протоны, нейтроны и электроны, причем протоны и нейтроны сосредоточены в ядре атома, а электроны - на его периферии (в электронной оболочке).

    Число протонов в ядре равно числу электронов в оболочке атома и отвечает порядковому номеру этого элемента в Периодической системе.

    Электронная оболочка атома представляет собой сложную систему. Она делится на подоболочки с разной энергией (энергетические уровни); уровни, в свою очередь, подразделяются на подуровни, а подуровни включают атомные орбитали, которые могут различаться формой и размерами (обозначаются буквами s, p, d, f и др.).

    Итак, главной характеристикой атома является не атомная масса, а величина положительного заряда ядра. Это более общая и точная характеристика атома, а значит, и элемента. От величины положительного заряда ядра атома зависят все свойства элемента и его положение в периодической системе. Таким образом, порядковый номер химического элемента численно совпадает с зарядом ядра его атома. Периодическая система элементов является графическим изображением периодического закона и отражает строение атомов элементов.

    Теория строения атома объясняет периодическое изменение свойств элементов. Возрастание положительного заряда атомных ядер от 1 до 110 приводит к периодическому повторению у атомов элементов строения внешнего энергетического уровня. А поскольку от числа электронов на внешнем уровне в основном зависят свойства элементов, то и они периодически повторяются. В этом физический смысл периодического закона.

    Каждый период в периодической системе начинается элементами, атомы которых на внешнем уровне имеют один s-электрон (незавершенные внешние уровни) и потому проявляют сходные свойства - легко отдают валентные электроны, что обуславливает их металлический характер. Это щелочные металлы - Li, Na, К, Rb, Cs.

    Заканчивается период элементами, атомы которых на внешнем уровне содержат 2(s2) электрона (в первом периоде) или 8 (s2p6) электронов (во всех последующих), то есть имеют завершенный внешний уровень. Это благородные газы Не, Ne, Аr, Кr, Хе, имеющие инертные свойства.

Периодическая система элементов оказала большое влияние на последующее развитие химии.

Дмитрий Иванович Менделеев (1834-1907)

Она не только была первой естественной классификацией химических элементов, показавшей, что они образуют стройную систему и находятся в тесной связи друг с другом, по и явилась могучим орудием для дальнейших исследований.

В то время, когда Менделеев на основе открытого им периодического закона составлял свою таблицу, многие элементы были еще неизвестны. Так, был неизвестен элемент четвертого периода скандий. По атомной массе вслед за кальцием шел титан, но титан нельзя было поставить сразу после кальция, так как он попал бы в третью группу, тогда как титан образует высший оксид , да и по другим свойствам должен быть отнесен к четвертой группе. Поэтому Менделеев пропустил одну клетку, т. е. оставил свободное место между кальцием и титаном. На том же основании в четвертом периоде между цинком и мышьяком были оставлены две свободные клетки, занятые теперь элементами галлием и германием. Свободные места остались и в других рядах. Менделеев был не только убежден, что должны существовать неизвестные еще элементы, которые заполнят эти места, но и заранее предсказал свойства таких элементов, основываясь на их положении среди других элементов периодической системы. Одному из них, которому в будущем предстояло занять место между кальцием и титаном, он дал название экабор (так как свойства его должны были напоминать бор); два других, для которых в таблице остались свободные места между цинком и мышьяком, были названы эка-алюминием и экасилицием.

В течение следующих 15 лет предсказания Менделеева блестяще подтвердились: все три ожидаемых элемента были открыты. Вначале французский химик Лекок де Буабодран открыл галлий, обладающий всеми свойствами экаалюминия; вслед за тем в Швеции Л. Ф. Нильсоном был открыт скандий, имевший свойства экабора, и, наконец, спустя еще несколько лет в Германии К. А. Винклер открыл элемент, названный им германием, который оказался тождественным экасилицию.

Чтобы судить об удивительной точности предвидения Менделеева, сопоставим предсказанные им в 1871 г. свойства экасилиция со свойствами открытого в 1886 г. германия:

Открытие галлия, скандия и германия было величайшим триумфом периодического закона.

Большое значение имела периодическая система также при установлении валентности и атомных масс некоторых элементов. Так, элемент бериллий долгое время считался аналогом алюминия и его оксиду приписывали формулу . Исходя из процентного состава и предполагаемой формулы оксида бериллия, его атомную массу считали равной 13,5. Периодическая система показала, что для бериллия в таблице есть только одно место, а именно - над магнием, так что его оксид должен иметь формулу , откуда атомная масса бериллия получается равной десяти. Этот вывод вскоре был подтвержден определениями атомной массы бериллия по плотности пара его хлорида.

Точно И в настоящее время периодический закон остается путеводной нитью и руководящим принципом химии. Именно на его основе были искусственно созданы в последние десятилетия трансурановые элементы, расположенные в периодической системе после урана. Один из них - элемент № 101, впервые полученный в 1955 г., - в честь великого русского ученого был назван менделевием.

Открытие периодического закона и создание системы химических элементов имело огромное значение не только для химии, но и для философии, для всего нашего миропонимания. Менделеев показал, что химические элементы составляют стройную систему, в основе которой лежит фундаментальный закон природы. В этом нашло выражение положение материалистической диалектики о взаимосвязи и взаимообусловленности явлений природы. Вскрывая зависимость между свойствами химических элементов и массой их атомов, периодический закон явился блестящим подтверждением одного из всеобщих законов развития природы - закона перехода количества в качество.

Последующее развитие науки позволило, опираясь на периодический закон, гораздо глубже познать строение вещества, чем это было возможно при жизни Менделеева.

Разработанная в XX веке теория строения атома в свою очередь дала периодическому закону и периодической системе элементов новое, более глубокое освещение. Блестящее подтверждение нашли пророческие слова Менделеева: «Периодическому закону не грозит разрушение, а обещаются только надстройка и развитие».

Колыванский сельскохозяйственный техникум
Агрономический факультет

Кафедра химии

Реферат:
Значение периодического закона Д.И.Менделеев.

Выполнила: студентка I курса
А-11 группы Калинкина В.В.
Проверил: преподаватель
Могилина В.А.

Колывань 2010
Содержание
Введение………………………………………………………… …………….3
Краткая биография и деятельность Д.И. Менделеева ……………………...4
История открытия Периодического закона………………………………….5
Значение Периодического закона для химии и естествознания……………6
Заключение…………………………………………………… ……………….9
Список использованной литературы………………………………………..10

Введение


Сами трудясь, вы сделаете все
и для близких, и для себя,
а если при труде успеха не будет,
будет неудача – не беда, пробуйте еще.
Д.И.Менделеев

Цель: узнать о значении периодического закона.
Задачи : 1) изучить историю периодического закона; 2) узнать о роли периодического закона в химии и естествознании; 3) сделать выводы.
Актуальность темы : эта тема очень интересна и привлекательна так как открытие в 1869 г. Периодического закона стало не только одним из крупнейших событий в истории химии XIX столетия, но и в известном смысле одним из самых выдающихся достижений человеческой мысли минувшего тысячелетия.
Периодический закон и Периодическая система химических элементов до сих пор все еще остаются загадкой. До сих пор не удается понять глубокие физические причины периодичности, в частности, причины периодической повторяемости сходных электронных конфигураций атомов, хотя ясно, что феномен этот связан с непространственной динамической симметрией атомных систем.
Наконец, остается во многих отношениях загадочной сама история открытия Периодического закона и создания Периодической системы, хотя ей была посвящена обширная литература. Разными исследователями предлагались различные версии истории открытия Периодического закона.

Краткая биография и деятельность Д.И. Менделеева
Менделеев Дмитрий Иванович (1834-1907) - выдающийся русский химик, автор Периодического закона родился в г. Тобольске, там же он закончил гимназию, а в 1850 г. был принят в Петербургский главный педагогический институт на физико-математический факультет. После защиты диссертации Менделеев в 1857 г. был назначен приват-доцентом. В 1859 г. он уехал заграничную командировку в Германию на два года, где работал в Гейдельберге у Бунзена, принял участие в работе Международного химического конгресса в Карлсруэ. После возвращения в Петербург Менделеев вел большую научную и преподавательскую деятельность, в 1865 г. защитил докторскую диссертацию, в которой была изложена его гидратная теория растворов и выдвинута идея о возможности существования в растворах соединений переменного состава.
В 1867 г. Менделеев был назначен профессором химии Петербургского университета. Заняв кафедру химии столичного университета, он стал главой университетских химиков в России и инициатором создания Русского химического общества (1868 г.). В 1868 г. Менделеев начал работать над учебником "Основы химии". Он писал, что его цель - "познакомить учащихся с основными данными и выводами химии в общедоступном научном изложении, указать на значение этих выводов для понимания как природы вещества и явлений вокруг нас совершающихся, так и тех применений, которые получила химия в сельском хозяйстве, технике". В процессе работы над второй частью учебника в феврале 1869 г. Менделеев сформулировал Периодический закон и предложил наиболее совершенную форму его воплощения в виде таблицы, которую он назвал "Опыт системы элементов, основанной на их атомном весе и химическом сходстве". В течение двух лет Менделеев работал над развитием и углублением открытого закона и готовил обобщающую статью "Естественная система элементов и применение ее к указанию свойств неоткрытых элементов". Менделеев предсказал существование:

    экаалюминия (был открыт в 1875 г. французом Лекоком де Буабодраном и назван галлием),
    экабора (был открыт в 1879 г. шведом Л.Ф.Нильсоном и назван скандием)
    экасилиция (был открыт в 1886 г. немцем К.А.Винклером и назван германием).
К середине 80-х годов XIX в. Периодический закон был признан всеми учеными и вошел в арсенал науки как один из важнейших законов природы.
Изучая газы, Менделеев (в 1874 г.) уточнил уравнение состояния для идеальных газов (уравнение Клапейрона-Менделеева).

В 1877 г. Менделеев высказал гипотезу о происхождении нефти из карбидов тяжелых металлов и предложил принцип дробной перегонки при переработке нефти, в 1888 г. - выдвинул идею о подземной газификации углей, в 1891 г. - разработал технологию изготовления нового типа бездымного пороха.
История открытия Периодического закона
Первый вариант Периодической таблицы элементов был опубликован Дмитрием Ивановичем Менделеевым в 1869 году - задолго до того, как было изучено строение атома. В это время Менделеев преподавал химию в Петербургском университете. Готовясь к лекциям, собирая материал для своего учебника "Основы химии", Д. И. Менделеев раздумывал над тем, как систематизировать материал таким образом, чтобы сведения о химических свойствах элементов не выглядели набором разрозненных фактов.
Ориентиром в этой работе Д. И. Менделееву послужили атомные массы (атомные веса) элементов. После Всемирного конгресса химиков в 1860 году, в работе которого участвовал и Д. И. Менделеев, проблема правильного определения атомных весов была постоянно в центре внимания многих ведущих химиков мира, в том числе и Д. И. Менделеева.
Располагая элементы в порядке возрастания их атомных весов, Д. И. Менделеев обнаружил фундаментальный закон природы, который теперь известен как Периодический закон:
Свойства элементов периодически изменяются в соответствии с их атомным весом.
Приведенная формулировка нисколько не противоречит современной, в которой понятие "атомный вес" заменено понятием "заряд ядра". Сегодня мы знаем, что атомная масса сосредоточена в основном в ядре атома. Ядро состоит из протонов и нейтронов. С увеличением числа протонов, определяющих заряд ядра, растет и число нейтронов в ядрах, а значит и масса атомов элементов.
До Менделеева было предпринято несколько попыток систематизировать элементы по разным признакам. В основном объединялись сходные по своим химическим свойствам элементы. Например: Li, Na, K. Или: Cl, Br, I. Эти и некоторые другие элементы объединялись в так называемые "триады". Таблица из пяти таких "триад" была опубликована Доберейнером еще в 1829 году, но она включала лишь небольшую часть из известных к тому времени элементов.
В 1864 году англичанин Дж. Ньюлендс заметил, что если располагать элементы в порядке возрастания их атомного веса, то примерно каждый восьмой элемент является своего рода повторением первого - подобно тому, как нота "до" (как и любая другая нота) повторяется в музыкальных октавах через каждые 7 нот (закон октав). Ниже показан вариант таблицы Ньюлендса стр.11 , относящийся к 1865 году. Элементы, имеющие одинаковый атомный вес (по данным того времени) помещались под одним номером. Можно видеть, с какими трудностями столкнулся Ньюлендс - наметившиеся закономерности быстро разрушались, поскольку в его системе не была учтена возможность существования еще не открытых элементов.
Доклад Ньюлендса «Закон октав и причины химических соотношений среди атомных весов» обсуждался на заседании Лондонского химического общества 1 марта 1866 года, а краткий отчет о нем публиковался в журнале «Сhemical News». Ньюлендс был близок к открытию Периодического закона, однако сама идея последовательной нумерации только известных к тому времени элементов не просто "ломала" плавное изменение их химических свойств - эта идея исключала возможность существования еще не открытых элементов, для которых в системе Ньюлендса просто не было места.

Значение Периодического закона для химии и естествознания
Принципиальная новизна Периодического закона, открытого и сформулированного Д. И. Менделеевым спустя ровно три года, заключалась в следующем:
1. Устанавливалась связь между НЕСХОДНЫМИ по своим свойствам элементами. Эта связь заключается в том, что свойства элементов плавно и примерно одинаково изменяются с возрастанием их атомного веса, а затем эти изменения ПЕРИОДИЧЕСКИ ПОВТОРЯЮТСЯ.
2. В тех случаях, когда создавалось впечатление, что в последовательности изменения свойств элементов не хватает какого-нибудь звена, в Периодической таблице предусматривались ПРОБЕЛЫ, которые надо было заполнить еще не открытыми элементами. Мало того, Периодический закон позволял ПРЕДСКАЗЫВАТЬ свойства этих элементов.
Первый вариант Периодической таблицы, опубликованный Менделеевым в 1869 году, выглядит непривычно для современного читателя (рис. 2 стр. 11). Пока не проставлены атомные номера, будущие группы элементов расположены горизонтально (а будущие периоды - вертикально), еще не открыты инертные газы, встречаются незнакомые символы элементов, многие атомные массы заметно отличаются от современных. Однако нам важно видеть, что уже в первый вариант Периодической таблицы Д. И. Менделеев включал больше элементов, чем их было открыто на тот момент! Он оставил свободными 4 клеточки своей таблицы для еще неизвестных элементов и даже смог правильно оценить их атомный вес. Атомные единицы массы (а.е.м.) тогда еще не были приняты и атомные веса элементов измеряли в "паях", близких по значению к массе атома водорода.
Предсказанные Д. И. Менделеевым и действительно открытые впоследствии элементы.
Во всех предыдущих попытках определить взаимосвязь между элементами другие исследователи стремились создать законченную картину, в которой не было места еще не открытым элементам. Наоборот, Д. И. Менделеев считал важнейшей частью своей Периодической таблицы те ее клеточки, которые оставались пока пустыми (знаки вопроса на рис. 2 стр.11.). Это давало возможность предсказать существование еще неизвестных элементов.
Достойно восхищения, что свое открытие Д. И. Менделеев сделал в то время, когда атомные веса многих элементов были определены весьма приблизительно, а самих элементов было известно всего 63 - то есть чуть больше половины известных нам сегодня.
Глубокое знание химических свойств различных элементов позволило Менделееву не только указать на еще не открытые элементы, но и предсказать их свойства! Посмотрите, как точно предсказал Д. И. Менделеев свойства элемента, названного им "эка-силицием" (на рис. 2 стр. 11 это элемент германий). Спустя 16 лет предсказание Д. И. Менделеева блестяще подтвердилось.
и т.д.................

Д. И. Менделеев писал: «До периодического закона элементы представляли лишь отрывочные случайные явления природы; не было повода ждать каких-либо новых, а вновь находимые были полной неожиданной новинкой. Периодическая закономерность первая дала возможность видеть не открытые еще элементы в такой дали, до которой невооруженное этой закономерностью зрение до тех пор не достигало».

С открытием Периодического закона химия перестала быть описательной наукой - она получила инструмент научного предвидения. Этот закон и его графическое отображение - таблица Периодической системы химических элементов Д. И. Менделеева - выполнили все три важнейшие функции теоретического знания: обобщающую, объясняющую и прогностическую. На их основе ученые:

  • систематизировали и обобщили все сведения о химических элементах и образуемых ими веществах;
  • дали обоснование различным видам периодической зависимости, существующим в мире химических элементов, объяснив их на основе строения атомов элементов;
  • предсказали, описали свойства еще не открытых химических элементов и образованных ими веществ, а также указали пути их открытия.

Систематизировать и обобщить сведения о химических элементах пришлось самому Д. И. Менделееву, когда он открывал Периодический закон, строил и совершенствовал свою таблицу. Причем ошибки в значениях атомных масс и наличие не открытых еще элементов создавали дополнительные трудности. Но великий ученый был твердо уверен в истинности открытого им закона природы. Основываясь на сходстве в свойствах и веря в правильность определения места элементов в таблице Периодической системы, он существенно изменил принятые в то время атомные массы и валентность в соединениях с кислородом у десяти элементов и «подправил» их еще у десяти других. Восемь элементов он разместил в таблице вопреки принятым в то время представлениям об их сходстве с другими. Например, таллий он исключил из естественного семейства щелочных металлов и поместил в III группу согласно проявляемой им высшей валентности; бериллий с неверно определенной относительной атомной массой (13) и валентностью III он перевел из III группы во II, изменив значение его относительной атомной массы на 9 и высшую валентность на II.

Большинство ученых восприняли поправки Д. И. Менделеева как научное легкомыслие, необоснованную дерзость. Периодический закон и таблица химических элементов рассматривались как гипотеза, т. е. предположение, нуждающееся в проверке. Ученый понимал это и именно для проверки правильности открытого им закона и системы элементов подробно описал свойства не открытых еще элементов и даже способы их открытия, исходя из предполагаемого места в системе. По первому варианту таблицы он сделал четыре прогноза о существовании неизвестных элементов (галлий, германий, гафний, скандий), а по усовершенствованному, второму - еще семь (технеций, рений, астат, франций, радий, актиний, протактиний).

За период с 1869 по 1886 г. были открыты три предсказанных элемента: галлий (П. Э. Лекок де Буабодран, Франция, 1875 г.), скандий (Л. Ф. Нильсон, Швеция, 1879 г.) и германий (К. Винклер, Германия, 1886 г.). Открытие первого из этих элементов, подтвердившее правильность прогноза великого русского ученого, вызвало у его коллег только интерес и удивление. Открытие же германия стало подлинным триумфом Периодического закона. К. Винклер писал в статье «Сообщение о германии»: «Не подлежит больше никакому сомнению, что новый элемент есть не что иное, как предсказанный Менделеевым за пятнадцать лет до этого экасилиций. Ибо едва ли может быть дано более убедительное доказательство справедливости учения о периодичности элементов, чем воплощение бывшего до сих пор гипотетическим экасилиция, и оно представляет собой поистине нечто большее, чем простое подтверждение смело выдвинутой теории, - оно означает выдающееся расширение химического поля зрения, могучий шаг в области познания».

На основе закона и таблицы Д. И. Менделеева были предсказаны и открыты благородные газы. И сейчас этот закон служит путеводной звездой для открытия или искусственного создания новых химических элементов. Например, можно утверждать, что элемент с № 114 похож на свинец (экасвинец), а № 118 будет благородным газом (экарадон).

Открытие Периодического закона и создание таблицы Периодической системы химических элементов Д. И. Менделеевым стимулировало поиск причин взаимосвязи элементов, способствовало выявлению сложной структуры атома и развитию учения о строении атома. Это учение, в свою очередь, позволило вскрыть физический смысл Периодического закона и объяснить расположение элементов в Периодической системе. Оно привело к открытию атомной энергии и использованию ее для нужд человечества.

Вопросы и задания к § 5

  1. Проанализируйте распределение биогенных макроэлементов по периодам и группам Периодической системы Д. И. Менделеева. Напомним, что к ним относят С, Н, О, N, Са, S, Р, К, Mg, Fe.
  2. Почему элементы главных подгрупп 2-го и 3-го периодов называют химическими аналогами? В чем проявляется эта аналогия?
  3. Почему водород, в отличие от всех других элементов, записывают в Периодической таблице Д. И. Менделеева дважды? Докажите правомочность двойственного положения водорода в Периодической системе, сравнив строение и свойства его атома, простого вещества и соединений с соответствующими формами существования других элементов - щелочных металлов и галогенов.
  4. Почему так похожи свойства лантана и лантаноидов, актиния и актиноидов?
  5. Какие формы соединений будут одинаковыми у элементов главных и побочных подгрупп?
  6. Почему общие формулы летучих водородных соединений в Периодической системе пишут только под элементами главных подгрупп, а формулы высших оксидов - под элементами обеих подгрупп (посередине)?
  7. Какова общая формула высшего гидроксида, соответствующего элементам VII группы? Каков его характер?

Возможность научного прогнозирования неизвестных элементов стала реальностью лишь после открытия периодического закона и периодической системы элементов. Д. И. Менделеев предсказал существование 11 новых элементов : экабора, экасилиция, экаалюминия и др. «Координаты» элемента в периодической системе (порядковый номер, группа и период) позволяли ориентировочно предсказать атомную массу, а также важнейшие свойства прогнозируемого элемента. Точность этих предсказаний возрастала особенно тогда, когда прогнозируемый элемент находился в окружении известных и достаточно изученных элементов.

Благодаря этому в 1875 г. во Франции Л. де Буабодран открыл галлий (экаалюминий); в 1879 г. Л. Нильсон (Швеция) открыл скандий (экабор); в 1886 г. в Германии К. Винклер открыл германий (экасилиций).

В отношении неоткрытых элементов девятого и десятого рядов высказывания Д. И. Менделеева были более осторожными, ибо их свойства были изучены крайне слабо. Так, после висмута, на котором обрывался шестой период, были оставлены два прочерка. Один соответствовал аналогу теллура, другой принадлежал неизвестному тяжелому галогену. В седьмом же периоде были известны лишь два элемента - торий и уран. Д. И. Менделеев оставил несколько клеток с прочерками, которые должны были принадлежать элементам первой, второй и третьей групп, предшествующих торию. Пустая клетка была оставлена и между торием и ураном. За ураном было оставлено пять свободных мест, т.е. почти за 100 лет были предвидены трансурановые элементы.

Для подтверждения точности прогнозов Д. И. Менделеева относительно элементов девятого и десятого рядов можно привести пример с полонием (порядковый номер 84). Предсказывая свойства элемента с порядковым номером 84, Д. И. Менделеев обозначил его как аналог теллура и назвал двителлуром. Для этого элемента он предположил атомную массу 212 и способность образовывать оксид типа ЭО э. Этот элемент должен иметь плотность 9,3 г/см 3 и быть легкоплавким, кристаллическим и труднолетучим металлом серого цвета. Полоний, который в чистом виде был получен лишь в 1946 г., представляет собой мягкий легкоплавкий металл серебристого цвета с плотностью 9,3 г/см 3 . По свойствам во многом напоминает тел- лур.

Периодический закон Д. И. Менделеева, будучи одним из важнейших законов природы, имеет исключительное значение. Отражая естественную взаимосвязь, существующую между элементами, ступенями развития материи от простого к сложному, этот закон положил начало современной химии. С его открытием химия перестала быть описательной наукой.

Периодический закон и система элементов Д. И. Менделеева являются одним из надежных методов познания мира. Так как элементы объединены общностью свойств или строения, то это свидетельствует о закономерностях взаимосвязи и взаимообусловленности явлений.

Все элементы составляют в совокупности одну линию непрерывного развития от самого простейшего водорода до 118-го элемента. Такая закономерность впервые была подмечена Д. И. Менделеевым, сумевшим предсказать существование новых элементов, показав тем самым непрерывность развития материи.

Сопоставлением свойств элементов и их соединений внутри групп легко можно обнаружить проявление закона о переходе количественных изменений в качественные. Так, внутри любого периода имеется переход от типичного металла к типичному неметаллу (галогену), однако переход от галогена к первому элементу следующего периода (щелочному металлу) сопровождается появлением резко противоположных этому галогену свойств. Открытие Д. И. Менделеева заложило точный и надежный фундамент теории строения атома, оказав огромное влияние на развитие всех современных знаний о природе вещества.

Работа Д. И. Менделеева по созданию периодической системы положила начало научно обоснованному методу целенаправленного поиска новых химических элементов. Примерами могут служить многочисленные успехи современной ядерной физики. За последние полвека с небольшим синтезированы элементы с порядковыми номерами 102-118. Изучение их свойств, так же как и получение, было бы невозможно без знаний закономерностей взаимосвязи между химическими элементами.

Доказательством подобного утверждения являются результаты исследований по синтезу элементов 114, 116, 118 .

Изотоп 114-го элемента получен взаимодействием плутония с изотопом 48 Са, а 116-го - взаимодействием кюрия с изотопом 48 Са:

Стабильность полученных изотопов столь высока, что они спонтанно не делятся, а испытывают альфа-распад, т.е. расщепление ядра с одновременным испусканием альфа-частиц.

Полученные экспериментальные данные полностью подтверждают теоретические расчеты: по мере последовательных альфа-распадов образуются ядра 112-го и 110-го элементов, после чего начинается спонтанное деление:


Сравнивая свойства элементов, мы убеждаемся, что они взаимосвязаны общностью структурных признаков. Так, сопоставляя строение внешних и предвнешних электронных оболочек, можно с высокой точностью предсказать все типы соединений, характерные для данного элемента. Такая четкая взаимосвязь очень хорошо иллюстрируется на примере 104-го элемента - резерфордия. Химиками было предсказано, что если данный элемент является аналогом гафния (72 Hf), то его тетрахлорид по свойствам должен быть примерно таким же, что и HfCl 4 . Экспериментальные химические исследования подтвердили не только прогноз химиков, но и открытие нового сверхтяжелого элемента 1(M Rf. Такая же аналогия прослеживается в свойствах - Os (Z = 76) и Ds (Z = 110) - оба элемента образуют летучие оксиды типа R0 4 . Все это говорит о проявлении закона взаимосвязи и взаимообусловленности явлений.

Сравнение свойств элементов как в пределах групп, так и периодов, и сопоставление их со строением атома указывают на закон перехода количества в качество. Переход количественных изменений в качественные возможен лишь через отрицание отрицания. Внутри периодов с увеличением заряда ядра происходит переход от щелочного металла к благородному газу. Следующий период вновь начинается со щелочного металла - элемента, который полностью отрицает свойства предшествующего ему благородного газа (например, Не и Li; Ne и Na; Аг и Кг и т.д.).

В каждом периоде заряд ядра последующего элемента возрастает на единицу но сравнению с предыдущим. Этот процесс наблюдается от водорода до 118-го элемента и свидетельствует о непрерывности развития материи.

Наконец, совмещение в атоме разноименных зарядов (протон и электрон), проявление металлических и неметаллических свойств, существование амфотерных оксидов и гидроксидов есть проявление закона единства и борьбы противоположностей.

Необходимо также отметить, что открытие периодического закона явилось началом фундаментальных исследований, касающихся свойств материи.

По выражению Нильса Бора, периодическая система является «путеводной звездой для исследований в области химии, физики, минералогии, техники».

  • Элементы 112, 114, 116, 118 получены в Объединенном институте ядерных исследований (г. Дубна, Россия). Элементы 113 и 115 получены совместно российскими и американскими физиками. Материал любезно предоставлен академиком РАН Ю. Ц. Оганесяном.