Окисление жирных кислот в тканях. B-окисление жирных кислот

Для преобразования энергии, заключенной в жирных кислотах, в энергию связей АТФ существует метаболический путь окисления жирных кислот до СО 2 и воды, тесно связанный с циклом трикарбоновых кислот и дыхательной цепью. Этот путь называется β-окисление , т.к. происходит окисление 3-го углеродного атома жирной кислоты (β-положение) в карбоксильную группу, одновременно от кислоты отщепляется ацетильная группа, включающая С 1 и С 2 исходной жирной кислоты.

Элементарная схема β-окисления

Реакции β-окисления происходят в митохондриях большинства клеток организма (кроме нервных клеток). Для окисления используются жирные кислоты, поступающие в цитозоль из крови или появляющиеся при липолизе собственных внутриклеточных ТАГ. Суммарное уравнение окисления пальмитиновой кислоты выглядит следующим образом:

Пальмитоил-SКоА + 7ФАД + 7НАД + + 7Н 2 O + 7HS-KoA → 8Ацетил-SКоА + 7ФАДН 2 + 7НАДН

Этапы окисления жирных кислот

1. Прежде, чем проникнуть в матрикс митохондрий и окислиться, жирная кислота должна активироваться в цитозоле. Это осуществляется присоединением к ней коэнзима А с образованием ацил-SКоА. Ацил-SКоА является высокоэнергетическим соединением. Необратимость реакции достигается гидролизом дифосфата на две молекулы фосфорной кислоты.

Ацил-SКоА-синтетазы находятся в эндоплазматическом ретикулуме, на наружной мембране митохондрий и внутри них. Существует широкий ряд синтетаз, специфичных к разным жирным кислотам.

Реакция активации жирной кислоты

2. Ацил-SКоА не способен проходить через митохондриальную мембрану, поэтому существует способ его переноса в комплексе с витаминоподобным веществом карнитином . На наружной мембране митохондрий имеется фермент карнитин-ацилтрансфераза I .

Карнитин-зависимый транспорт жирных кислот в митохондрию

Карнитин синтезируется в печени и почках и затем транспортируется в остальные органы. Во внутриутробном периоде и в первые годы жизни значение карнитина для организма чрезвычайно велико. Энергообеспечение нервной системы детского организма и, в частности, головного мозга осуществляется за счет двух параллельных процессов: карнитин-зависимого окисления жирных кислот и аэробного окисления глюкозы. Карнитин необходим для роста головного и спинного мозга, для взаимодействия всех отделов нервной системы, ответственных за движение и взаимодействие мышц. Существуют исследования, связывающие с недостатком карнитина детский церебральный паралич и феномен "смерти в колыбели ".

Дети раннего возраста, недоношенные и дети с малой массой особен-но чувствительны к недостаточности карнитина. Эндогенные запасы у них быстро истощаются при различных стрессовых ситуациях (инфекционные заболевания, желудочно-кишечные расстройства, нарушения вскармливания). Биосинтез карнитина резко ограничен в связи с небольшой мышечной массой, а поступление с обычными пищевыми продуктами неспособно поддержать достаточный уровень в крови и тканях.

3. После связывания с карнитином жирная кислота переносится через мембрану транслоказой . Здесь на внутренней стороне мембраны фермент карнитин-ацилтрансфераза II вновь образует ацил-SКоА который вступает на путь β-окисления.

4. Процесс собственно β-окисления состоит из 4-х реакций, повторяющихся циклически. В них последовательно происходит окисление (ацил-SКоА-дегидрогеназа), гидратирование (еноил-SКоА-гидратаза) и вновь окисление 3-го атома углерода (гидроксиацил-SКоА-дегидрогеназа). В последней, трансферазной, реакции от жирной кислоты отщепляется ацетил-SКоА . К оставшейся (укороченной на два углерода) жирной кислоте присоединяется HS-КоА, и она возвращается к первой реакции. Все повторяется до тех пор, пока в последнем цикле не образуются два ацетил-SКоА.

Последовательность реакций β-окисления жирных кислот

Расчет энергетического баланса β-окисления

Ранее при расчете эффективности окисления коэффициент P/O для НАДH принимался равным 3,0, для ФАДH 2 – 2,0.

По современным данным значение коэффициента P/O для НАДH соответствует 2,5, для ФАДH 2 – 1,5.

При расчете количества АТФ, образуемого при β-окислении жирных кислот необходимо учитывать:

  • количество образуемого ацетил-SКоА – определяется обычным делением числа атомов углерода в жирной кислоте на 2.
  • число циклов β-окисления . Число циклов β-окисления легко определить исходя из представления о жирной кислоте как о цепочке двухуглеродных звеньев. Число разрывов между звеньями соответствует числу циклов β-окисления. Эту же величину можно подсчитать по формуле (n/2 -1), где n – число атомов углерода в кислоте.
  • число двойных связей в жирной кислоте. В первой реакции β-окисления происходит образование двойной связи при участии ФАД. Если двойная связь в жирной кислоте уже имеется, то необходимость в этой реакции отпадает и ФАДН 2 не образуется. Количество недополученных ФАДН 2 соответствует числу двойных связей. Остальные реакции цикла идут без изменений.
  • количество энергии АТФ , потраченной на активацию (всегда соответствует двум макроэргическим связям).

Пример. Окисление пальмитиновой кислоты

  • так как имеется 16 атомов углерода, то при β-окислении образуется 8 молекул ацетил-SКоА . Последний поступает в ЦТК, при его окислении в одном обороте цикла образуется 3 молекулы НАДН (7,5 АТФ), 1 молекула ФАДН 2 (1,5 АТФ) и 1 молекула ГТФ, что эквивалентно 10 молекулам АТФ. Итак, 8 молекул ацетил-SКоА обеспечат образование 8×10=80 молекул АТФ.
  • для пальмитиновой кислоты число циклов β-окисления равно 7 . В каждом цикле образуется 1 молекула ФАДН 2 (1,5 АТФ) и 1 молекула НАДН (2,5 АТФ). Поступая в дыхательную цепь, в сумме они "дадут" 4 молекулы АТФ. Таким образом, в 7 циклах образуется 7×4=28 молекул АТФ.
  • двойных связей в пальмитиновой кислоте нет .
  • на активацию жирной кислоты идет 1 молекула АТФ, которая, однако, гидролизуется до АМФ, то есть тратятся 2 макроэргические связи или две АТФ .

Таким образом, суммируя, получаем 80+28-2 =106 молекул АТФ образуется при окислении пальмитиновой кислоты.

«Свободными жирными кислотами» (СЖК) называют жирные кислоты, находящиеся в неэстерифицированной форме; иногда их называют неэстерифицированными жирными кислотами (НЖК). В плазме крови длинноцепочечные СЖК образуют комплекс с альбумином, а в клетке - с белком, связывающим жирные кислоты, который называют Z-белком; фактически они никогда не бывают свободными. Короткоцепочечные жирные кислоты лучше растворяются в воде и находятся либо в виде неионизированной кислоты, либо в виде аниона жирной кислоты.

Активация жирных кислот

Так же как и в случае метаболизма глюкозы, жирная кислота прежде всего должна превратиться в активное производное в результате реакции, протекающей с участием АТР, и только после этого она способна взаимодействовать с ферментами, катализирующими дальнейшее превращение. В процессе окисления жирных кислот эта стадия является единственной, требующей энергии в виде АТР. В присутствии АТР и кофермента А фермент ацил-СоА-синтетаза (тиокиназа) катализирует превращение свободной жирной кислоты в «активную жирную кислоту» или ацил-СоА, которое осуществляется за счет расщепления одной богатой энергией фосфатной связи.

Присутствие неорганической пирофосфатазы, которая расщепляет богатую энергией фосфатную связь в пирофосфате, обеспечивает полноту протекания процесса активации. Таким образом, для активации одной молекулы жирной кислоты в итоге расходуются две богатые энергией фосфатные связи.

Ацил-СоА-синтетазы находятся в эндоплазмати-ческом ретикулуме, а также внутри митохондрий и на их наружной мембране. В литературе описан ряд ацил-СоА-синтетаз; они специфичны к жирным кислотам с определенной длиной цепи.

Роль карнитина в окислении жирных кислот

Карнитин является широко распространенным соединением,

особенно много его в мышцах. Он образуется из лизина и метионина в печени и почках. Активация низших жирных кислот и их окисление могут происходить в митохондриях независимо от карнитина, однако длинноцепочечные ацил-СоА-производные (или СЖК) не могут проникать в митохондрии и окисляться, если предварительно не образуют ацилкарнитин-производных. На наружной стороне внутренней мембраны митохондрий имеется фермент карнитин-пальмитоилтрансфераза I, который переносит длинноцепочечные ацильные группы на карнитин с образованием ацилкарнитина; последний способен проникать в митохондрии, где находятся ферменты, катализирующие процесс (-окисления.

Возможный механизм, объясняющий участие карнитина в окислении жирных кислот в митохондриях, приведен на рис. 23.1. Кроме того, в митохондриях находится другой фермент - карнитин-ацетилтрансфераза, который катализирует перенос короткоцепочечных ацильных групп между СоА и карнитином. Функция этого фермента пока не ясна.

Рис. 23.1. Роль карнитина в переносе длинноцепочечных жирных кислот через внутреннюю мембрану митохондрий. Длиннопепочечный ацил-СоА не способен проходить через внутреннюю мембрану митохондрий, в то время как такой способностью обладает ацилкарнитин, образую цийся при Действии карнитин-пальмитонлтрансферазы I. Карнитин-ацилкарнитин-фанслоказа является транспортной системой. осуществляющей перенос молекулы ацилкарнитина через внутреннюю мембрану митохондрии, сопряженный с выходом мопскулы свободного карнитина. Затем при действии карнитин-пальмитоилтрансферазы 11, локализованной на внутренней поверхности внутренней мембраны митохондрии, ацилкарнитин взаимодействует с СоА. В результате в митохондриальном матриксе вновь образуется ацил-СоА. а карнитин высвобождается.

Возможно,

он облегчает транспорт ацетильных групп через мембрану митохондрий.

b-Окисление жирных кислот

Общее представление дает рис. 23.2. При 13-окислении жирных кислот 2 атома углерода одновременно отщепляются от карбоксильного конца молекулы ацил-СоА. Углеродная цепь разрывается

Рис. 23.2. Схема -окисления жирных кислот.

между атомами углерода в положениях , откуда и возникло название -окисление. Образующиеся двухуглеродные фрагменты представляют собой ацетил-СоА. Так, в случае пальмитоил-СоА образуется 8 молекул ацетил-СоА.

Последовательность реакций

Ряд ферментов, известных под общим названием «оксидазы жирных кислот», находятся в митохондриальном матриксе в непосредственной близости от дыхательной цепи, локализованной во внутренней мембране митохондрий. Эта система катализирует окисление ацил-СоА до ацетил-СоА, которое сопряжено с фосфорилированием ADP до АТР (рис. 23.3).

После проникновения ацильного фрагмента через мембрану митохондрий при участии карнитиновой транспортной системы и переноса ацильной группы от карнитина на происходит отщепление двух атомов водорода от углеродных атомов в положениях катализируемое ацил-СоА-дегидрогеназои. Продуктом этой реакции является . Фермент представляет собой флавопротеин, его простетической группой служит FAD. Окисление последнего в дыхательной цепи митохондрий происходит при участии другого флавопротеина. названного электронпереносящим флавопротеином [см. с. 123). Далее происходит гидратация двойной связи, в результате чего образуется 3-гидроксиацил-СоА. Эта реакция катализируется ферментом А2-еноил-СоА-гидратазой. Затем 3-гидроксиацил-ОоА дегидрируется по 3-му атому углерода с образованием 3-кетоацил-СоА; эта реакция катализируется 3-гидроксиацил-СоА-дегидрогеназой при,участии в качестве кофермента NAD. 3-Кетоацил-СоА расщепляется между вторым и третьим атомами углерода 3-кетотиолазой или ацетил-СоА-ацнлтрансферазой с образованием ацетил-СоА- и ацил-СоА-производного, которое на 2 атома углерода короче исходной молекулы ацил-СоА. Это тиолитическое расщепление требует участия еще одной молекулы Образующийся укороченный ацил-СоА вновь вступает в цикл Р-окисления, начиная с реакции 2 (рис. 23.3). Таким путем длинноцепочечные жирные кислоты могут полностью расщепляться до ацетил-СоА (С2-фрагментов); последние в цикле лимонной кислоты, который протекает в митохондриях, окисляются до

Окисление жирных кислот с нечетным числом атомов углерода

b-Окисление жирных кислот с нечетным числом атомов углерода заканчивается на стадии образования трехуглеродного фрагмента - пропионил-СоА, который затем превращается в являющийся интермедиатом цикла лимонной кислоты (см. также рис. 20.2).

Энергетика процесса окисления жирных кислот

В результате переноса электронов по дыхательной цепи от восстановленного флавопротеина и NAD синтезируется по 5 богатых энергией фосфатных связей (см. гл. 13) на каждые 7 (из 8) молекул ацетил-СоА, образующихся при b-окислении пальмитиновой кислоты Всего образуется 8 молекул ацетил-СоА, и каждая из них, проходя через цикл лимонной кислоты, обеспечивает синтез 12 богатых энергией связей. Всего в расчете на молекулу пальмитата по этому пути генерируется 8 х 12 = 96 богатых энергией фосфатных связей. Если учесть две связи, необходимые для активации

(см. скан)

Рис. 23.3. Р Окисление жирных кислот. Длинноцепочечный ацит СоА последовательно укорачивается, проходя цикт за циклом ферментативные реакции 2-5; в результате каждого цикла происходит отщепление ацетил-СоА, катализируемое тиолазой (реакция 5). Когда остается четырехуглеродный ацильный радикал, то из него в результате реакции 5 образуются две молекулы ацетил-СоА.

жирной кислоты, то в общей сложности получим 129 богатых энергией связей на 1 моль или кДж. Поскольку свободная энергия сгорания пальмитиновой кислоты составляет то на долю энергии, запасаемой в виде фосфатных связей при окислении жирной кислоты, приходится около 40%.

Окисление жирных кислот в пероксисомах

В пероксисомах -окисление жирных кислот происходит в модифицированном виде. Продуктами окисления в данном случае являются ацетил-СоА и , последняя образуется на стадии, катализируемой связанной с флавопротеином дегидрогеназой. Этот путь окисления непосредственно не сопряжен с фосфорилированием и образованием АТР, но он обеспечивает расщепление жирных кислот с очень длинной цепью (например, ); он включается при диете, богатой жирами, или приеме гиполипидемических лекарственных препаратов, таких, как клофибрат. Ферменты пероксисом не атакуют жирные кислоты с короткими цепями, и процесс Р-окисления останавливается при образовании октаноил-СоА. Октаноильные и ацетильные группы удаляются затем из пероксисом в виде октаноилкарнитина и ацетилкарнитина и окисляются в митохондриях.

а- и b-Окисление жирных кислот

Окисление является основным путем катаболизма жирных кислот. Однако недавно было обнаружено, что в тканях мозга происходит -окисление жирных кислот, т. е. последовательное отщепление одноуглеродных фрагментов от карбоксильного конца молекулы. В этом процессе участвуют интермедиаты, содержащие он не сопровождается образованием богатых энергией фосфатных связей.

Окисление жирных кислот в норме весьма незначительно. Этот тип окисления, катализируемый гидроксилазами при участии цитохрома с. 123), протекает в эндоплазматическом -Группа превращается в --группу, которая затем окисляется до -СООН; в результате образуется дикарбоновая кислота. Последняя расщепляется путем Р-окисления обычно до адипиновой и субериновой кислот, которые затем удаляются с мочой.

Клинические аспекты

Кетоз развивается при высокой скорости окисления жирных кислот в печени, особенно в тех случаях, когда оно происходит на фоне недостатка углеводов (см. с. 292). Подобное состояние возникает при приеме пищи, богатой жирами, голодании, сахарном диабете, кетозе у лактирующих коров и токсикозе беременности (кетозе) у овец. Ниже приводятся причины, вызывающие нарушение процесса окисления жирных кислот.

Недостаток карнитина встречается у новорожденных, чаще всего недоношенных детей; он обусловлен либо нарушением биосинтеза карнитина; либо его «утечкой» в почках. Потери карнитина могут происходить при гемодиализе; больные, страдающие органической ацидурией, теряют большое количество карнитина, который экскретируется из организма в форме конъюгатов с органическими кислотами. Для восполнения потерь этого соединения некоторые пациенты нуждаются в особой диете, включающей продукты, содержащие карнитин. Признаками и симптомами недостатка карнитина являются приступы гипогликемии, возникающие из-за снижения глюконеогенеза в результате нарушения процесса - окисления жирных кислот, уменьшение образования кетоновых тел, сопровождающееся повышением содержания СЖК в плазме крови, мышечная слабость (миастения), а также накопление липидов. При лечении внутрь принимают препарат карнитина. Симптомы недостатка карнитина очень сходны с симптомами синдрома Рейе (Reye), при котором, однако, содержание карнитина является нормальным. Причина синдрома Рейе пока неизвестна.

Снижение активности карнитинпальмитоилтрансферазы печени приводит к гипогликемии и понижению содержания кетоновых тел в плазме крови, а снижение активности карнитин-пальмитоилтраисферазы мышц - к нарушению процесса окисления жирных кислот, в результате чего периодически возникает мышечная слабость и развивается миоглобинурия.

Ямайская рвотная болезнь возникает у людей после употребления в пищу незрелых плодов аки (Blig-hia sapida), которые содержат токсин гипоглицнн, инактивирующий ацил-СоА-дегидрогеназу, в результате чего ингибируется процесс -окисления.

При дикарбоновой ацидурии происходит экскреция кислот и развивается гипогликемия, не связанная с повышением содержания кетоновых тел. Причиной данного заболевания является отсутствие в митохондриях ацил-СоА-дегидрогеназы среднецепочечных жирных кислот. При этом нарушается -окисление и усиливается -окисление длинноцепочечных жирных кислот, которые укорачиваются до среднецепочечных дикарбоновых кислот, выводимых из организма.

Болезнь Рефсума является редким неврологическим заболеванием, которое вызывается накоплением в тканях фитановой кислоты, образующейся из фитола; последний входит в состав хлорофилла, поступающего в организм с продуктами растительного происхождения. Фитановая кислота содержит метальную группу у третьего атома углерода, это блокирует ее -окисление. В норме эта метильная группа

(см. скан)

Рис. 23.4. Последовательность реакций окисления ненасыщенных жирных кислот на примере, линолевой кислоты. -Жирные кислоты либо жирные кислоты, образующие вступают на данный путь на стадии указанной на схеме.

удаляется при а-окислении, но у людей, страдающих болезнью Рефсума, имеется врожденное нарушение системы а-окисления, что приводит к накоплению фитановой кислоты в тканях.

Синдром Цельвегера (Zellweger) или цереброгепаторенальный синдром является редким наследственным заболеванием, при котором во всех тканях отсутствуют пероксисомы. У больных, страдающих синдромом Цельвегера, в мозгу накапливаются кислоты, поскольку из-за отсутствия пероксисом у них не происходит процесс окисления длинноцепочечных жирных кислот.

Окисление ненасыщенных жирных кислот

-окислении.

Перекисное окисление полиненасыщенных жирных кислот в микросомах

NADPH-зависимое перекисное окисление ненасыщенных жирных кислот катализируется ферментами, локализованными в микросомах (см. с. 124). Антиоксиданты, например БГТ (бутилированный гидрокситолуол) и а-токоферол (витамин Е), ингибируют перекисное окисление липидов в микросомах.

Процесс окисления жирных кислот складывается из следующих основных этапов.

Активация жирных кислот. Свободная жирная кислота независимо от длины углеводородной цепи является метаболически инертной и не может подвергаться никаким биохимическим превращениям, в том числе окислению, пока не будет активирована. Активация жирной кислоты протекает на наружной поверхности мембраны митохондрий при участии АТФ, коэнзима A (HS-KoA) и ионов Mg 2+ . Реакция катализируется ферментом ацил-КоА-синтетазой:

В результате реакции образуется ацил-КоА, являющийся активной формой жирной кислоты.

Первая стадия дегидрирования. Ацил-КоА в митохондриях прежде всего подвергается ферментативному дегидрированию, при этом ацил-КоА теряет 2 атома водорода в α- и β-положениях, превращаясь в КоА-эфир ненасыщенной кислоты.

Стадия гидратации. Ненасыщенный ацил-КоА (еноил-КоА) при участии фермента еноил-КоА-гидратазы присоединяет молекулу воды. В результате образуется β-оксиацил-КоА (или 3-гидроксиацил-КоА):

Вторая стадия дегидрирования. Образовавшийся β-оксиацил-КоА (3-гидроксиацил-КоА) затем дегидрируется. Эту реакциюкатализируют НАД + -зависимые дегидрогеназы:

Тиолазная реакция. представляет собой расщепление 3-оксоацил-КоА с помощью тиоловой группы второй молекулы КоА. В результате образуется укороченный на два углеродных атома ацил-КоА и двууглеродный фрагмент в виде ацетил-КоА. Данная реакция катализируется ацетил-КоА-ацилтрансферазой (β-ке-тотиолазой):

Образовавшийся ацетил-КоА подвергается окислению в цикле трикар-боновых кислот, а ацил-КоА, укоротившийся на два углеродных атома, снова многократно проходит весь путь β-окисления вплоть до образования бутирил-КоА (4-углеродное соединение), который в свою очередь окисляется до 2 молекул ацетил-КоА.

Баланс энергии. При каждом цикле β-окисления образуются одна молекула ФАДН 2 и одна молекула НАДН. Последние в процессеокисления в дыхательной цепи и сопряженного с ним фосфорилирования дают: ФАДН 2 – 2 молекулы АТФ и НАДН – 3 молекулы АТФ, т.е. в сумме за один цикл образуется 5 молекул АТФ. При окислении пальмитиновой кислоты образуется 5 х 7 = 35 молекул АТФ. В процессе β-окисления пальмитиновой кислоты образуется 8 молекул ацетил-КоА, каждая из которых, «сгорая» в цикле трикарбоновых кислот, дает 12 молекул АТФ, а 8 молекул ацетил-КоА дадут 12 х 8 = 96 молекул АТФ.

Таким образом, всего при полном β-окислении пальмитиновой кислоты образуется 35 + 96 = 131 молекула АТФ. С учетом одноймолекулы АТФ, потраченной в самом начале на образование активной формы пальмитиновой кислоты (пальмитоил-КоА), общий энергетический выход при полном окислении одной молекулы пальмитиновой кислоты в условиях животного организма составит 131 – 1 = 130 молекул АТФ.

Окисление жирных кислот - это процесс распада жирных кислот, который протекает с выделением энергии. Из этой статьи ты узнаешь, почему данная химическая реакция чрезвычайно важна для нашего организма.

Жирные кислоты образуются при расщеплении жиров. Такие жиры могут накапливаться в организме и использоваться в дальнейшем для получения энергии. Жирные кислоты необходимы человеческому организму, поскольку они участвуют в транспортировке кислорода кровеносной системой, укрепляют клеточные мембраны, а также обеспечивают слаженную работу всех органов и тканей. Жирные кислоты понижают холестерин, препятствуя образованию бляшек в артериях и снижая уровень триглицеридов. Также жирные кислоты предупреждают появление морщин, помогая сохранить кожу здоровой и упругой.

Существует три типа жирных кислот: омега-3, омега-6 и омега-9. Омега-3 и омега-6 называют незаменимыми, потому что они помогают регулировать уровень липидов в крови. От этого зависит свертываемость крови и кровяное давление. Кроме того, незаменимые жирные кислоты стимулируют работу иммунной системы.

Окисление жирных кислот и выделение энергии

Главный источник энергии для организма — глюкоза. Если запас глюкозы исчерпан, начинается процесс расщепления запасов жирных кислот. Он протекает с выделением энергии. То же самое происходит и при расщеплении углеводов, однако жирные кислоты высвобождают больше энергии на один атом углерода.

Организму важно расщеплять сохраненные жиры, поскольку иногда тело нуждается в энергии в тот момент, когда нет подходящего источника пищи, которую можно переработать.

Нарушение окисления жирных кислот

Организм некоторых людей не способен расщеплять накопленные жиры из-за нарушений в работе или отсутствия определенных ферментов. Часто это обусловлено генетическими факторами. Это означает, что, нуждаясь в энергии и не имея источника пищи, организм не может использовать жиры. В результате жирные кислоты не расщепляются и накапливаются в крови, а значит, жиры продолжают откладываться. Это может привести к серьезным проблемам со здоровьем.

Наиболее часто причиной нарушений процесса окисления жирных кислот является дефицит карнитина. Карнитин — это аминокислота, которая транспортирует жирные кислоты в митохондрии, где они расщепляются, выделяя энергию. Карнитин также регулирует метаболизм, предотвращая понижение уровня сахара в крови и помогая выводить клеточные отходы, способные привести к интоксикации.

Как увеличить количество жирных кислот в рационе

Жирные кислоты содержатся в рыбе и некоторых растениях. Омега-3 и омега-6 жирные кислоты не синтезируются в нашем организме, поэтому их необходимо получать с пищей или принимать в виде пищевых добавок. Источниками жирных кислот являются лосось, тунец, макрель, семена льна, соевое и сафлоровое масла. В качестве пищевых добавок обычно принимают капсулы рыбьего жира.

Статью подготовила : Ольга Позиховская

протекает в печени, почках, скелетных и сердечной мышцах, в жировой ткани. В мозговой ткани скорость окисления жирных кислот весьма незначительна; основным источником энергии в мозговой ткани служит глюкоза.

окисление молекулы жирной кислоты в тканях организма происходит в β-положении. В результате от молекулы жирной кислоты последовательно отщепляются двууглеродные фрагменты со стороны карбоксильной группы.

Жирные кислоты, входящие в состав естественных жиров животных и растений, имеют четное число углеродных атомов. Любая такая кислота, от которой отщепляется по паре углеродных атомов, в конце концов проходит через стадию масляной кислоты. После очередного β-окисления масляная кислота становится ацетоуксусной. Последняя затем гидролизуется до двух молекул уксусной кислоты.

Доставка жирных кислот к месту их окисления – к митохондриям – происходит сложным путем: при участии альбумина осуществляется транспорт жирной кислоты в клетку; при участии специальных белков (fatty acid binding proteins, FABP) – транспорт в пределах цитозоля; при участии карнитина – транспорт жирной кислоты из цитозоля в митохондрии.

Процесс окисления жирных кислот складывается из следующих основных этапов.

Активация жирных кислот . Свободная жирная кислота независимо от длины углеводородной цепи является метаболически инертной и не может подвергаться никаким биохимическим превращениям, в том числе окислению, пока не будет активирована. Активация жирной кислоты протекает на наружной поверхности мембраны митохондрий при участии АТФ, коэнзима A (HS-KoA) и ионов Mg 2+ . Реакция катализируется ферментом ацил-КоА-синтетазой:

В результате реакции образуется ацил-КоА, являющийся активной формой жирной кислоты.

Считают, что активация жирной кислоты протекает в 2 этапа. Сначала жирная кислота реагирует с АТФ с образованием ациладенилата, представляющим собой эфир жирной кислоты и АМФ. Далее сульфгидрильная группа КоА действует на прочно связанный с ферментом ациладенилат с образованием ацил-КоА и АМФ.

Транспорт жирных кислот внутрь митохондрий . Коэнзимная форма жирной кислоты, в равной мере как и свободные жирные кислоты, не обладает способностью проникать внутрь митохондрий, где, собственно, и протекает их окисление. Переносчиком активированных жирных кислот с длинной цепью через внутреннюю митохондриальную мембрану служит карнитин. Ацильная группа переносится с атома серы КоА на гидроксильную группу карнитина с образованием ацилкарнитина, который диффундирует через внутреннюю митохондриальную мембрану:

Реакция протекает при участии специфического цитоплазматического фермента карнитин-ацилтрансферазы. Уже на той стороне мембраны, которая обращена к матриксу, ацильная группа переносится обратно на КоА, что термодинамически выгодно, поскольку О-ацильная связь в кар-нитине обладает высоким потенциалом переноса группы. Иными словами, после прохождения ацилкарнитина через мембрану митохондрий происходит обратная реакция – расщепление ацилкарнитина при участии HS-KoA и митохондриальной карнитин-ацилтрансферазы:

Внутримитохондриальное окислениежирных кислот . Процесс окисления жирной кислоты в митохондриях клетки включает несколько последовательных энзиматических реакций.

Первая стадия дегидрирования. Ацил-КоА в митохондриях прежде всего подвергается ферментативному дегидрированию, при этом ацил-КоА теряет 2 атома водорода в α- и β-положениях, превращаясь в КоА-эфир ненасыщенной кислоты. Таким образом, первой реакцией в каждом цикле распада ацил-КоА является его окисление ацил-КоА-де-гидрогеназой, приводящее к образованию еноил-КоА с двойной связью между С-2 и С-3:

Существует несколько ФАД-содержащих ацил-КоА-дегидрогеназ, каждая из которых обладает специфичностью по отношению к ацил-КоА с определенной длиной углеродной цепи.

Стадия гидратации . Ненасыщенный ацил-КоА (еноил-КоА) при участии фермента еноил-КоА-гидратазы присоединяет молекулу воды. В результате образуется β-оксиацил-КоА (или 3-гидроксиацил-КоА):

Заметим, что гидратация еноил-КоА стереоспецифична, подобно гидратации фумарата и аконитата (см. с. 348). В результате гидратации транс-Δ 2 -двойной связи образуется только L-изомер 3-гидроксиацил-КоА.

Вторая стадия дегидрирования . Образовавшийся β-оксиацил-КоА (3-гидроксиацил-КоА) затем дегидрируется. Эту реакцию катализируют НАД + -зависимые дегидрогеназы:

Тиолазная реакция . В ходе предыдущих реакций происходило окисление метиленовой группы при С-3 в оксогруппу. Тиолазная реакция представляет собой расщепление 3-оксоацил-КоА с помощью тиоловой группы второй молекулы КоА. В результате образуется укороченный на два углеродных атома ацил-КоА и двууглеродный фрагмент в виде ацетил-КоА. Данная реакция катализируется ацетил-КоА-ацилтрансферазой (β-ке-тотиолазой):

Образовавшийся ацетил-КоА подвергается окислению в цикле трикар-боновых кислот, а ацил-КоА, укоротившийся на два углеродных атома, снова многократно проходит весь путь β-окисления вплоть до образования бутирил-КоА (4-углеродное соединение), который в свою очередь окисляется до 2 молекул ацетил-КоА

За один цикл β-окисления образуется 1 молекула ацетил-СоА, окисление которого в цитратном цикле обеспечивает синтез 12 моль ATP . Кроме того, образуется 1 моль FADH 2 и 1 моль NADH+H , при окислении которых в дыхательной цепи синтезируется соответственно 2 и 3 моль ATP (в сумме 5).

Таким образом, при окислении, например, пальмитиновой кислоты (С16) происходит 7 циклов β-окисления, в результате которых образуется 8 моль ацетил-СоА, 7 моль FADH 2 и 7 моль NADH+H. Следовательно, выход ATP составляет 35 молекул в результате β-окисления и 96 ATP в результате цитратного цикла, что соответствует в сумме 131 молекул АТФ.