I.2 Фотосинтез, необходимые для него условия. Темная фаза фотосинтеза

I.2 Фотосинтез, необходимые для него условия

Фотосинтез у зеленых растений – это процесс преобразования света в химическую энергию органических соединений, синтезируемых из диоксида углерода и воды. Процесс фотосинтеза представляет собой цепь окислительно-восстановительных реакций, совокупность которых подразделяют на две фазы – световую и темновую.

1. Световая фаза. Для этой фазы характерно то, что энергия солнечной радиации, поглощенная пигментами системы хлоропластов, преобразуется в электрохимическую.

При действии света на хлоропласт начинается электронный поток по системе переносчиков – сложных органических соединений, встроенных в мембраны тилакоидов. С переносом электронов по ЭТЦ сопряжено активное поступление протонов через тилакоидную мембрану из стромы внутрь тилакоида. В тилакоидном пространстве происходит увеличение концентрации протонов за счет расщепления молекул воды и в результате окисления электронного переносчика пластохинона на внутренней стороне мембраны. Когда протоны идут обратно по градиенту из тилакоидного пространства в строму, на наружной поверхности тилакоида с участием фермента АТФ-синтетазы из АДФ и фосфорной кислоты синтезируется АТФ, т. е. происходит фотосинтетическое фосфореилирование с запасанием энергии в АТФ, которая затем переходит в строму хлоропласта.

Заканчивается передача электронов следующим образом. Достигнув внешней поверхности мембраны тилакоида, пара электронов следует с ионом водорода, находящимся в строме. Оба электрона и ион водорода присоеденяются к молекуле переносчика водорода – НАДФ+ (никатиномидадениндинуклетидфосфат), который при этом переходит в свою востановленную форму

НАДФ Н+Н+:

НАДФ++2Н++2е-→НАДФ Н+Н+

Следовательно активированные световой энергией электроны используются на присоедининие атома водорода к его переносчику, т. е. на восстановление НАДФ+ в НАДФ Н+Н+, который с наружной поверхности фотосинтетической мембраны переходит в строму.

В молекулах хлорофилла, утративших свои электроны, образовавшиеся электронные «дырки» действуют как сильный окислитель и отрывают электроны от молекул воды. Через ряд переносчиков эти электроны передаются на молекулу хлорофилла и заполняют «дырку». Внутри тилакоида происходит фотоокислние (фотолиз) воды, в результате которого выделяется свободный кислород, а также накапливаются ионы водорода

2Н2О→4Н++4е-+О2

Таким образом, во время световой фазы фотосинтеза происходят три процесса: образование кислорода вследствие разложения воды, синтез АТФ и образование атомов водорода в форме НАДФ Н2. Кислород диффундирует в атмосферу, а АТФ и НАДФ Н2 транспортируются в матрикс пластид и участвуют в процессе темновой фазы.

2.Темновая фаза фотосинтеза протекает в матриксе хлоропласта как на свету, так и в темноте и представляет собой ряд последовательных преобразований СО2, поступаещего из воздуха. Осуществляются реакции темновой фазы за счет энергии АТФ и НАДФ Н2 и использовании имеющихся в пластидах пятиуглеродных сахаров, один из которых – рибулозодифосфат – является акцептором СО2. Ферменты связывают пятиуглеродный сахар с углекислым газом воздуха. При этом образуются соединения которые последовательно восстанавливаются до шестиуглеродной молекулы глюкозы.

Суммарная реакция фотосинтеза

6СО2+6Н2 энергия света С6Н12О6+6О2

Хлорофилл

В процессе фотосинтеза кроме моносахаридов (глюкоза и др.), которые превращаются в крахмал и запасаются растением, синтезируются мономеры других органических соединений – аминокислоты, глицерин и жирные кислоты. Таким образом, благодоря фотосинтезу растительные, а точнее – хлорофиллсодержащие, клетки обеспечивают себя и все живое на Земле необходимыми органическими веществами и кислородом.

I.3 Деление клетки

Описано три способа деления эукариотических клеток: амитоз (прямое деление), митоз (непрямое деление) и мейоз (редукционное деление).

Амитоз – относительно редкий способ деления клетки. При амитозе интерфазное ядро делится путем перетяжки, равномерное распределение наследственного материала не обеспечивается. Нередко ядро делится без последующего разделения цитоплазмы и образуются двухъядерные клетки. Клетка, претерпевшая амитоз, в дальнейшем не способна вступать в нормальный митотический цикл. Поэтому амитоз встречается, как правило, в клетках и тканях, обреченных на гибель.

Митоз. Митоз, или непрямое деление, - основной способ деления эукариотических клеток. Митоз – это деление ядра, которое приводит к образованию двух дочерних ядер, в каждом из которых имеется точно такой же набор хромосом, что и был в родительском ядре.

В непрерывном процессе митотического деления различают четыре фазы: профазу, метафазу, анафазу и телофазу.

Профаза – самая длительная фаза митоза, когда происходит перестройка всей структуры ядра для деления. В профазе происходит укорочение и утолщение хромосом вследствие их спирализации. В это время хромосомы двойные (удвоение происходит в S-периоде интерфазы), состоят из двух хроматид, связанных между собой в области первичной перетяжки осбой структурой – цетромерой. Одновременно с утолщением хромосом исчезает ядрышко и фрагментируется (распадается на отдельные цистерны) ядерная оболочка. После распада ядерной оболочки хромосомы свободно и беспорядочно лежат в цитоплазме. Начинается формирование ахромативного веретена – веретена деления, которое представляет систему нитей, идущих от полюсов клетки. Нити веретена имеют диаметр около 25нм. Это пучки микротрубочек, состоящих из субъедениц белка тубулина. Микротрубочки начинают формироваться со стороны центриолей либо со стороны хромосом (в клетках растений).

Метафаза. В метафазе завершается образование веретена деления, которое состоит из микротрубочек двух типов: хромосомных, которые связываются с центромерами хромосом, и ценросомных (полюсных), которые тянутся от полюса к полюсу клетки. Каждая двойная хромосома прикрепляется к микротрубочкам веретена деления. Хромосомы как бы выталкиваются микротрубочками в область экватора клетки, т.е. располагаются на равном расстоянии от полюсов. Они лежат в одной плоскости и образуют так называемую экваториальную, или метафазную пластинку. В метафазе отчетливо видно двойное строение хромосом, соединенных только в области центромеры. Именно в этот период легко подсчитать число хромосом, изучать их морфологические особенности.

Анафаза начинается делением центромеры. Каждая из хроматид одной хромосомы становится самостоятельной хромосомой. Сокращение тянущих нитей ахроматинового веретена увлекает их к противоположным полюсам клетки. В результате у каждого из полюсов клетки оказывается столько же хромосом, сколько было их в материнской клетке, причем набор их одинаков.

Телофаза – последняя фаза митоза. Хромосомы деспирализуются, становятся плохо заметными. На каждом из полюсов вокруг хромосом воссоздается ядерная оболочка. Формируются ядрышки, веретено деления исчезает. В образовавшихся ядрах каждая хромосома состоит теперь всего из одной хроматиды, а не из двух.


Как понятно из названия, фотосинтез по своей сути являет собой природный синтез органических веществ, превращая СО2 из атмосферы и воду в глюкозу и свободный кислород.

При этом необходимо наличие энергии солнечного света.

Химическое уравнение процесса фотосинтеза в общем можно представить в следующем виде:

Фотосинтез имеет две фазы: темную и световую. Химические реакции темной фазы фотосинтеза существенно отличаются от реакций световой фазы, однако темная и световая фаза фотосинтеза зависят друг от друга.

Световая фаза может происходить в листьях растений исключительно при солнечном свете. Для темной же необходимо наличие углекислого газа, именно поэтому растение все время должно поглощать его из атмосферы. Все сравнительные характеристики темной и световой фаз фотосинтеза будут предоставлены ниже. Для этого была создана сравнительная таблица «Фазы фотосинтеза».

Световая фаза фотосинтеза

Основные процессы в световой фазе фотосинтеза происходят в мембранах тилакоидов. В ней участвуют хлорофилл, белки-переносчики электронов, АТФ-синтетаза (фермент, ускоряющий реацию) и солнечный свет.

Далее механизм реакции можно описать так: когда солнечный свет попадает на зеленые листья растений, в их структуре возбуждаются электроны хлорофилла (заряд отрицательный), которые перейдя в активное состояние, покидают молекулу пигмента и оказываются на внешней стороне тилакоида, мембрана которого заряжена также отрицательно. В то же время молекулы хлорофилла окисляются и уже окисленные они восстанавливаются, отбирая таким образом электроны у воды, которая находится в структуре листа.

Этот процесс приводит к тому, что молекулы воды распадаются, а созданные в результате фотолиза воды ионы, отдают свои электроны и превращаются в такие радикалы ОН, которые способны проводить дальнейшие реакции. Далее эти реакционноспособные радикалы ОН объединяются, создавая полноценные молекулы воды и кислород. При этом свободный кислород выходит во внешнюю среду.

В результате всех этих реакций и превращений, мембрана тилакоида листа с одной стороны заряжается положительно (за счет иона Н+), а с другой — отрицательно (за счет электронов). Когда разность между этими зарядами в двух сторонах мембраны достигает больше 200 мВ, протоны проходят через специальные каналы фермента АТФ-синтетазы и за счет этого происходит превращение АДФ до АТФ (в результате процесса фосфорилизации). А атомный водород, который освобождается из воды, восстанавливает специфический переносчик НАДФ+ до НАДФ·Н2. Как видим, в результате световой фазы фотосинтеза происходит три основных процесса:

  1. синтез АТФ;
  2. создание НАДФ·Н2;
  3. образование свободного кислорода.

Последний освобождается в атмосферу, а НАДФ·Н2 и АТФ берут участие в темной фазе фотосинтеза.

Темная фаза фотосинтеза

Темная и световая фазы фотосинтеза характеризуются большими затратами энергии со стороны растения, однако темная фаза протекает быстрее и требует меньше энергии. Для реакций темной фазы не нужен солнечный свет, поэтому они могут происходить и днем и ночью.

Все основные процессы этой фазы протекают в строме хлоропласта растения и являют собой своеобразную цепочку последовательных превращений углекислого газа из атмосферы. Первая реакция в такой цепи – фиксация углекислого газа. Чтобы она проходила более плавно и быстрее, природой был предусмотрен фермент РиБФ-карбоксилаза, который катализирует фиксацию СО2.

Далее происходит целый цикл реакций, завершением которого является преобразование фосфоглицериновой кислоты в глюкозу (природный сахар). Все эти реакции используют энергию АТФ и НАДФ Н2, которые были созданы в световой фазе фотосинтеза. Помимо глюкозы в результате фотосинтеза образуются также и другие вещества. Среди них разные аминокислоты, жирные кислоты, глицерин, а также нуклеотиды.

Фазы фотосинтеза: таблица сравнений

Критерии сравнения Световая фаза Темная фаза
Солнечный свет Обязателен Необязателен
Место протекание реакций Граны хлоропласта Строма хлоропласта
Зависимость от источника энергии Зависит от солнечного света Зависит от АТФ и НАДФ Н2, образованных в световой фазе и от количества СО2 из атмосферы
Исходные вещества Хлорофилл, белки-переносчики электронов, АТФ-синтетаза Углекислый газ
Суть фазы и что образуется Выделяется свободный О2, образуется АТФ и НАДФ Н2 Образование природного сахара (глюкозы) и поглощение СО2 из атмосферы

Фотосинтез — видео

С использованием световой энергии или без нее. Он характерен для растений. Рассмотрим далее, что собой представляют темновая и световая фаза фотосинтеза.

Общие сведения

Органом фотосинтеза у высших растений является лист. В качестве органоидов выступают хлоропласты. В мембранах их тилакоидов присутствуют фотосинтетические пигменты. Ими являются каротиноиды и хлорофиллы. Последние существуют в нескольких видах (а, с, b, d). Главным из них считается а-хлорофилл. В его молекуле выделяется порфириновая "головка" с атомом магния, расположенным в центре, а также фитольный "хвост". Первый элемент представлен в виде плоской структуры. "Головка" является гидрофильной, поэтому располагается на той части мембраны, которая направлена к водной среде. Фитольный "хвост" является гидрофобным. За счет этого он удерживает хлорофилльную молекулу в мембране. Хлорофиллами поглощается сине-фиолетовый и красный свет. Они также отражают зеленый, за счет чего растения имеют характерный для них цвет. В мембранах тилактоидов молекулы хлорофилла организованы в фотосистемы. Для синезеленых водорослей и растений характерны системы 1 и 2. Фотосинтезирующие бактерии имеют только первую. Вторая система может разлагать Н 2 О, выделять кислород.

Световая фаза фотосинтеза

Процессы, происходящие в растениях, отличаются сложностью и многоступенчатостью. В частности, выделяют две группы реакций. Ими являются темновая и световая фаза фотосинтеза. Последняя протекает при участии фермента АТФ, белков, переносящих электроны, и хлорофилла. Световая фаза фотосинтеза происходит в мембранах тилактоидов. Хлорофилльные электроны возбуждаются и покидают молекулу. После этого они попадают на внешнюю поверхность мембраны тилактоида. Она, в свою очередь, заряжается отрицательно. После окисления начинается восстановление молекул хлорофилла. Они отбирают электроны у воды, которая присутствует во внутрилакоидном пространстве. Таким образом, световая фаза фотосинтеза протекает в мембране при распаде (фотолизе): Н 2 О + Q света → Н + + ОН —

Ионы гидроксила превращаются в реакционноспособные радикалы, отдавая свои электроны:

ОН — → .ОН + е —

ОН-радикалы объединяются и образуют свободный кислород и воду:

4НО. → 2Н 2 О + О 2 .

При этом кислород удаляется в окружающую (внешнюю) среду, а внутри тилактоида идет накопление протонов в особом "резервуаре". В результате там, где протекает световая фаза фотосинтеза, мембрана тилактоида за счет Н + с одной стороны получает положительный заряд. Вместе с этим за счет электронов она заряжается отрицательно.

Фосфирилирование АДФ

Там, где протекает световая фаза фотосинтеза, присутствует разность потенциалов между внутренней и наружной поверхностями мембраны. Когда она достигает 200 мВ, начинается проталкивание протонов сквозь каналы АТФ-синтетазы. Таким образом, световая фаза фотосинтеза происходит в мембране при фосфорилировании АДФ до АТФ. При этом атомарный водород направляется на восстановление особого переносчика никотинамидадениндинуклеотидфосфата НАДФ+ до НАДФ.Н2:

2Н + + 2е — + НАДФ → НАДФ.Н 2

Световая фаза фотосинтеза, таким образом, включает в себя фотолиз воды. Его, в свою очередь, сопровождают три важнейших реакции:

  1. Синтез АТФ.
  2. Образование НАДФ.Н 2 .
  3. Формирование кислорода.

Световая фаза фотосинтеза сопровождается выделением последнего в атмосферу. НАДФ.Н2 и АТФ перемещаются в строму хлоропласта. На этом световая фаза фотосинтеза завершается.

Другая группа реакций

Для темновой фазы фотосинтеза не нужна световая энергия. Она идет в строме хлоропласта. Реакции представлены в виде цепочки последовательно происходящих преобразований поступающего из воздуха углекислого газа. В итоге образуются глюкоза и прочие органические вещества. Первой реакцией является фиксация. В качестве акцептора углекислого газа выступает рибулозобифосфат (пятиуглеродный сахар) РиБФ. Катализатором в реакции является рибулозобифосфат-карбоксилаза (фермент). В результате карбоксилирования РиБФ формируется шестиуглеродное неустойчивое соединение. Оно практически мгновенно распадается на две молекулы ФГК (фосфоглицериновой кислоты). После этого идет цикл реакций, где она через несколько промежуточных продуктов трансформируется в глюкозу. В них используются энергии НАДФ.Н 2 и АТФ, которые были преобразованы, когда шла световая фаза фотосинтеза. Цикл указанных реакций именуется "циклом Кальвина". Его можно представить следующим образом:

6СО 2 + 24Н+ + АТФ → С 6 Н 12 О 6 + 6Н 2 О

Помимо глюкозы, в ходе фотосинтеза образуются прочие мономеры органических (сложных) соединений. К ним, в частности, относят жирные кислоты, глицерин, аминокислоты нуклеотиды.

С3-реакции

Они представляют собой тип фотосинтеза, при котором в качестве первого продукта образуются трехуглеродные соединения. Именно он описан выше как цикл Кальвина. В качестве характерных особенностей С3-фотосинтеза выступают:

  1. РиБФ является акцептором для углекислого газа.
  2. Реакция карбоксилирования катализирует РиБФ-карбоксилаза.
  3. Образуется шестиуглеродное вещество, которое впоследствии распадается на 2 ФГК.

Фосфоглицериновая кислота восстанавливается до ТФ (триозофосфатов). Часть из них направляется на регенерацию рибулозобифосфата, а остальная - превращается в глюкозу.

С4-реакции

Для этого типа фотосинтеза характерно появление четырехуглеродных соединений в качестве первого продукта. В 1965 году было выявлено, что С4-вещества появляются первыми у некоторых растений. Например, это было установлено для проса, сорго, сахарного тростника, кукурузы. Эти культуры стали именовать С4-растениями. В следующем, 1966-м, Слэк и Хэтч (австралийские ученые) выявили, что у них почти полностью отсутствует фотодыхание. Также было установлено, что такие С4 растения намного эффективнее осуществляют поглощение углекислого газа. В результате путь трансформации углерода в таких культурах стали именовать путем Хэтча-Слэка.

Заключение

Значение фотосинтеза очень велико. Благодаря ему из атмосферы ежегодно поглощается углекислый газ в огромных объемах (миллиардами тонн). Вместо него выделяется не меньшее количество кислорода. Фотосинтез выступает в качестве основного источника формирования органических соединений. Кислород участвует в образовании озонового слоя, обеспечивающего защиту живых организмов от воздействия коротковолновой УФ-радиации. В процессе фотосинтеза лист поглощает только 1% всей энергии света, падающего на него. Его продуктивность находится в пределах 1 г органического соединения на 1 кв. м поверхности за час.

Кислород - важнейшая составляющая существования всего живого на Земле. Удивительно, но этот элемент на нашей планете, хоть его концентрация в воздухе по данным некоторых ученых неумолимо уменьшается, является восполнимым запасом. Еще более поразительным кажется тот факт, что синтезируется он из более чем доступных ресурсов - воды, солнечного света и углекислого газа. И осуществляют этот чудесный процесс растения.

Конечно, речь идет о фотосинтезе - удивительном творении природы. Несмотря на то, что ученые досконально изучили этот вопрос, повторить этапы фотосинтеза в лабораторных условиях нереально по сей день.

Этот процесс принято делить на два этапа:

  • Световая фаза фотосинтеза.
  • Темновая фаза фотосинтеза.

Из их названия вполне ясно, что первая часть процесса протекает на свету, то есть при участии солнечных лучей. Происходит она только в зеленых листьях растений, поскольку те содержат хлоропласты - особые элементы, в мембранах которых осуществляется синтез АТФ - молекулы, в которой запасается энергия.

При попадании фотонов солнечного света на листья растений, содержащих хлорофилл, происходит превращение энергии солнечного света в энергетические молекулы АТФ, уже упомянутые выше. Кроме того, благодаря отщеплению двух атомов водорода от молекулы воды (что также происходит при помощи солнечного света) образуется молекула НАДФ. Разложенная молекула воды, лишенная двух атомов водорода, остается со свободным кислородом, который и поступает в атмосферу. Таким образом, продукты фотосинтеза в световой фазе - это:

  • кислород;
  • энергетическая молекула АТФ;
  • атомарный водород НАДФ Н2.

Любопытно, что образование кислорода в этом процессе вовсе не является конечной целью. Скорее, это побочный эффект. Далее происходит темновая фаза фотосинтеза, или хемосинтез, в котором принимают непосредственное участие продукты первой фазы. Рассмотрим его поподробнее.

Действительно, целью процесса не является образование кислорода. Темновая фаза фотосинтеза протекает в иной части листа - в стромах его хлоропластов. По окончанию световой фазы растение успевает запастись внушительным количеством энергетических молекул - АТФ и НАДФ Н2, следовательно, участие света больше не является необходимым. Именно с помощью этих молекул происходит синтез органических элементов. Логично, что задача энергетической молекулы АТФ - поставка энергии для осуществления процессов синтеза, в то время как роль НАДФ Н2 - восстановление.

В начале этой фазы молекула восстановителя окисляется, благодаря чему исчезают два атома водорода, что на выходе дает чистую молекулу НАДФ. В то же время АТФ отдает остаток фосфорной кислоты, превращаясь в АДФ. Эти два процесса происходят в матриксе листа. Вновь полученные молекулы после этого возвращаются в грани листьев, что дает возможность повторить весь процесс световой фазы. Однако и это не является ключевым мы лишь обозначили цикличность и последовательность операций, происходящих в листьях.

Конечным продуктом данной фазы становится глюкоза - органическое соединение, относимое к простым сахарам. Впервые подробно описать синтез этой молекулы смог Мелвин Кальвин. Выяснилось, что обе молекулы, рассмотренные в рамках световой фазы, - энергетическая и восстановитель - участвуют в процессах синтеза. Кроме того, важными элементами для образования простых сахаров являются 6 молекул углекислого газа (CO2), 24 атомов водорода, 6 молекул воды:

6СО2 + 24Н + АТФ С6Н12О6 + 6Н2O.

Темновая фаза фотосинтеза важна растениям потому, что кроме глюкозы в этот период образуются различные аминокислоты, нуклеотиды, жирные кислоты и глицерин.

Фотосинтез - в высшей степени уникальный природный процесс. Он не только является залогом поддержания постоянного уровня кислорода в атмосфере и но и являет собой совершенство природы, когда из неорганических элементов создаются органические.

Для темновых реакций, которые протекают в строме, свет не нужен. Восстановление СО 2 происходит за счет энергии (АТФ) и восстановительной силы (НАДФ·Н 2), образующихся при световых реакциях. Темновые реакции контролируются ферментами. Последовательность этих реакций была определена в США Кальвином, Бенсоном и Бэссемом в период с 1946 по 1953 г.; в 1961 г. Кальвину была присуждена за эту работу Нобелевская премия.

Эксперименты Кальвина

Работы Кальвина были основаны на использовании радиоактивного изотопа углерода 14 С (период полураспада 5570 лет, см. Приложение 1.3), который стал доступным для исследователей только в 1945 г. Кроме того, Кальвин применял бумажную хроматографию, которая в то время была сравнительно новым, еще мало распространенным методом. Культуры одноклеточной зеленой водоросли хлореллы (Chlorella) выращивали в специальном аппарате (рис. 9.17). Культуру выдерживали с 14 СО 2 в течение различных промежутков времени, затем клетки быстро фиксировали, выливая суспензию в горячий метанол. Растворимые продукты фотосинтеза экстрагировали, концентрировали и разделяли при помощи двумерной хроматографии на бумаге (рис. 9.18 и Приложение 1.8.2). Цель состояла в том, чтобы проследить путь, по которому меченый углерод попадает (через ряд промежуточных продуктов) в конечные продукты фотосинтеза. Положение радиоактивных соединений на бумаге определяли с помощью радиоавтографии : для этого на хроматограмму накладывали фотопленку, чувствительную к излучению 14 С, и она засвечивалась, т. е. чернела, в тех местах, где находились радиоактивные вещества (рис. 9.18). Уже за одну минуту инкубации с 14 СО 2 синтезировались многие сахара и органические кислоты, в том числе различные аминокислоты. Однако Кальвину удалось, используя очень короткие экспозиции - в течение 5 и менее секунд - идентифицировать первый продукт фотосинтеза и установить, что это кислота, содержащая три атома углерода, а именно фосфоглицериновая кислота (ФГК). Затем он выяснил всю цепь промежуточных соединений, по которой передается фиксированный углерод; эти стадии будут рассмотрены позднее. С тех пор эти реакции называют циклом Кальвина (или циклом Кальвина - Бенсона- Бэссема).


Рис. 9.18. А. Фиксация 14 СО 2 У водорослей при кратковременном освещении. Определение продуктов фиксации с помощью хроматографии на бумаге и радиоавтографии. Б. Радиоавтографы продуктов фотосинтеза, получающихся после кратковременного освещения водорослей в присутствии 14 СО 2

9.18. Какие преимущества дает применение долгоживущих радиоактивных изотопов в биологических исследованиях?

9.19. Какие преимущества можно получить, взяв хлореллу вместо высшего растения?

9.20. Почему сосуд аппарата Кальвина имеет плоскую, а не шарообразную форму?

Этапы пути углерода

Фиксация двуокиси углерода:


Акцептором СО 2 служит пятиуглеродный сахар (пентоза) рибулозобисфосфат (т. е. рибулоза с двумя фосфатными группами; раньше это соединение называли рибулозодифосфатом). Присоединение СО 2 к тому или иному веществу называется карбоксилированием , а фермент, катализирующий такую реакцию, - карбоксилазой . Образующийся шестиуглеродный продукт неустойчив и сразу же распадается на две молекулы фосфоглицериновой кислоты (ФГК), которая и является первым продуктом фотосинтеза. Фермент рибулозобисфосфат-карбоксилаза содержится в строме хлоропластов в большом количестве - это фактически самый распространенный в мире белок.

Восстановительная фаза :


ФГК содержит три атома углерода и имеет кислотную карбоксильную группу (-СООН). ТФ - это триозофосфат, или глицеральдегидфосфат (трехуглеродный сахар); он имеет альдегидную группу (-СНО).

Для удаления кислорода из ФГК (т. е. для ее восстановления) используются восстановительная сила НАДФ·Н 2 и энергия АТФ. Реакция протекает в два этапа: сначала расходуется часть АТФ, образовавшегося в ходе световых реакций, а затем используется весь НАДФ·Н 2 , также полученный на свету. Суммарный результат - восстановление карбоксильной группы кислоты (-СООН) до альдегидной группы (-СНО). Продукт реакции - триозофосфат, т. е. трехуглеродный сахар с присоединенной к нему фосфатной группой. В этом соединении больше химической энергии, чем в ФГК, и это первый углевод, который образуется при фотосинтезе.

Регенерация акцептора для СО 2 - рибулозобисфосфата . Часть триозофосфата (ТФ) должна израсходоваться на регенерацию рибулозобисфосфата, который используется в первой реакции. Этот процесс представляет собой сложный цикл, в котором участвуют сахарофосфаты с 3, 4, 5, 6, 7 атомами углерода. Именно здесь и расходуется остальной АТФ. Все темновые реакции суммированы на рис. 9.19. На этом рисунке цикл Кальвина изображен в виде "черного ящика", в который с одной стороны поступают СО 2 и Н 2 О, а с другой стороны выходит триозофосфат. Как видно из этой схемы, остаток АТФ используется для фосфорилирования рибулозобисфосфата, однако детали этой сложной цепи реакций не показаны.

Из рис. 9.19 можно вывести такое суммарное уравнение:


Здесь важно обратить внимание на то, что на образование двух молекул триозофосфата идет шесть молекул СО 2 . Уравнение можно упростить, поделив все коэффициенты на 6:


9.21. Перерисуйте рис. 9.19, указав только число атомов углерода, участвующих в реакциях; например, вместо 6 РиБФ напишите "6 × 5С" и т. д.

Основные сведения о процессе фотосинтеза резюмированы в табл. 9.6.

Таблица 9.6. Краткие сведения о фотосинтезе
Световые реакции Темновые реакции
Локализация в хлоропластах Тилакоиды Строма
Реакции Фотохимические, т. е. требуют света. Световая энергия вызывает перенос электронов от "доноров" электронов к их "акцепторам" либо по нециклическому, либо по циклическому пути. Участвуют две фотосистемы - Ι и ΙΙ. В них находятся молекулы хлорофиллов, которые при поглощении энергии света испускают электроны. Вода служит донором электронов для нециклического пути. Перенос электронов приводит к образованию АТФ (фотофосфорилированию) и НАДФ·Н 2 (см. также табл. 9.5). Не требуют света. СО 2 фиксируется, когда связывается с пятиуглеродным акцептором - рибулозобисфосфатом (РиБФ); при этом образуются две молекулы трехуглеродного соединения-фосфоглицериновой кислоты (ФГК), первого продукта фотосинтеза. Происходит целый ряд реакций, в совокупности называемых циклом Кальвина; при этом регенерируется акцептор для СО 2 -РиБФ, а ФГК восстанавливается, превращаясь в сахар (см. также рис. 9.19).
Комбинированные уравнения