Взаимодействие генов (аллельные, неаллельные). Взаимодействие генов — Гипермаркет знаний Что такое взаимодействие генов

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

Взаимодействия аллельных генов. Явление, когда за один признак отвечает несколько генов (аллелей), называется взаимодействием генов. Если это аллели одного и того же гена, то такие взаимодействия называются аллельными, а в случае аллелей разных генов - неаллельными.

Выделяют следующие основные типы аллельных взаимодействий: доминирование, неполное доминирование, сверхдоминирование и кодоминирование, плейотролия.

Доминирование - тип взаимодействия двух аллелей одного гена, когда один из них полностью исключает проявление действия другого. Такое явление возможно при следующих условиях: 1) доминантный аллель в гетерозиготном состоянии обеспечивает синтез продуктов, достаточный для проявления признака такого же качества, как и в состоянии доминантной гомозиготы у родительской формы; 2) рецессивный аллель совсем неактивен, либо продукты его активности не взаимодействуют с продуктами активности доминантного аллеля.

Примерами такого взаимодействия аллельных генов может служить доминирование пурпурной окраски цветков гороха над белой, гладкой формы семян над морщинистой, темных волос над светлыми, карих глаз над голубыми у человека и т. д.

Неполное доминирование, или промежуточный характер наследования, наблюдается в том случае, когда фенотип гибрида (гетерозиготы) отличается от фенотипа обеих родительских гомозигот, т. е. выражение признака оказывается промежуточным, с большим или меньшим уклонением в сторону одного или другого родителя. Механизм этого явления состоит в том, что рецессивный аллель неактивен, а степень активности доминантного аллеля недостаточна для того, чтобы обеспечить нужный уровень проявления доминантного признака.

Неполное доминирование оказалось широко распространенным явлением. Оно наблюдается в наследовании курчавости волос у человека, масти крупного рогатого скота, окраски оперения у кур, многих других морфологических и физиологических признаков у растений, животных и человека.

Сверхдоминирование - более сильное проявление признака у гетерозиготной особи (Аа), чем у любой из гомозигот (АА и аа). Предполагается, что это явление лежит в основе гетерозиса.

Кодоминирвание - участие обоих аллелей в определении признака у гетерозиготной особи. Ярким и хорошо изученным примером кодоминирования может служить наследование IV группы крови у человека (группа АВ).

Плейотролия - один ген влияет на проявление нескольких признаков, такое явление называется множественным действием одного гена. Например, у человека известная болезнь - синдром Марфана - арахнодактилия («паучьи пальцы») детерминируется доминантным геном, который отвечает за патологическое развитие соединительной ткани, вследствие этого проявляется комплекс патологических признаков - длинные, тонкие («паучьи») пальцы, дефекты развития сердечно-сосудистой системы и подвывих хрусталика (нарушение зрения). В основе таких патологических признаков лежит дефект развития соединительной ткани, обусловленным патологическим геном.

Взаимодействия неаллельных генов .

Среди них можно выделить следующие основные типы: комплементарность, эпистаз и полимерию.

Комплементарность - взаимодействие неаллельных генов, которые обусловливают развитие нового признака, отсутствующего у родителей. Примером комплементарного действия у человека могут служить случаи, когда у глухих родителей рождаются дети с нормальным слухом. Развитие нормального слуха находится под генетическим контролем десятков различных неаллельных генов, гомозиготное рецессивное состояние одного из которых может приводить к одной из форм наследственной глухоты. Таких форм у человека известно более 30. Если один из родителей является гомозиготой по рецессивному гену аа, а другой - гомозиготой по другому рецессивному гену bb, то все их дети будут двойными гетерозиготами и, следовательно, слышащими, поскольку доминантные аллели будут взаимно дополнять друг друга. Таким образом формируется новый по отношению к родителям признак - нормальный слух.

Эпистаз (от греч. ерi - над + stasis - препятствие) - взаимодействие неаллельных генов, при котором наблюдается подавление проявления одного гена действием другого, неаллельного гена.

Подавляющий ген называется геном- супрессором, а подавляемый - гипостатическим геном. По-видимому, действие гена- супрессора на подавляемый ген сходно с принципом доминантность - рецессивность. Но существенное различие заключается в том, что эти гены не являются аллельными, т.е. расположены в негомологичных хромосомах или занимают различные локусы в гомологичных.

Различают доминантный и рецессивный эпистаз . При доминантном эпистазе доминантный аллель гена- супрессора подавляет проявление доминантного аллеля другого гипостатического гена. При рецессивном эпистазе, или криптомерии, рецессивный аллель гена-супрессора, будучи в гомозиготном состоянии, не дает проявиться доминантной или рецессивным аллелям других генов.
Примером рецессивного эпистаза у человека может служить так называемый бомбейский фенотип, когда индивид, имеющий доминантный аллель группы крови системы АВ0 (например, аллель В, определяющий принадлежность человека к III или IV группе), идентифицируется в реакции агглютинации как человек с 0(I). Это состояние возникает в результате того, что данный индивид является рецессивной гомозиготой (hh) по другой, нежели система АВ0, генетической системе Hh. Для реализации аллелей IА и IЕ необходимо присутствие хотя бы одного доминантного I аллеля Н.
Полимерия (от греч. роlуs - много + meros - часть) - вид взаимодействия, когда эффекты нескольких неаллельных генов, определяющих один и тот же признак, примерно одинаковы. Подобные признаки получили название количественных, или полимерных признаков. Как правило, степень проявления полимерных признаков зависит от числа доминантных генов. Наследование полимерных признаков было впервые описано шведским генетиком Г. Нильсон-Эле в 1908 г.

Анализ особенностей расщепления показал, что в данном случае окраску зерен определяют два доминантных аллеля двух различных генов, а сочетания их рецессивных аллелей определяют отсутствие окраски. Поскольку полимерные гены имеют одно-направленное действие, их, как правило, обозначают одинаковыми буквами. Таким образом, исходные родительские формы имели генотипы А]А1А2А2 и а1а1а2а2. Наличие всех четырех доминантных аллелей определяло самую интенсивную окраску, трех доминантных аллелей (типа А1А1А2А2) - менее интенсивную окраску и т.д.
Примером полимерного наследования у человека является наследование окраски кожных покровов. В браке индивида негроидной расы (коренного жителя Африки) с черной окраской кожи и представителем европеоидной расы с белой кожей дети рождаются с промежуточным цветом кожи (мулаты). В браке двух мулатов потомки могут обладать любой окраской кожи: от черной до бе-лой, поскольку пигментация кожи обусловлена действием трех или четырех неаллельных генов. Влияние каждого из этих генов на окраску кожи примерно одинаково.
Полимерное наследование характерно для так называемых количественных признаков, таких, как рост, вес, окраска кожных покровов, скорость протекания биохимических реакций, артериальное давление, содержание сахара в крови, особенности нервной системы, уровень интеллекта, и многих других, которые нельзя разложить на четкие фенотипические классы. Чем большее число неаллельных генов контролируют развитие количественного признака, тем менее заметны переходы между фенотипическими классами.

Ген - структурная единица передающейся по наследству информации. Он представляет собой определенный участок (иногда РНК). Взаимодействие генов обеспечивает передачу элементарных признаков родительских организмов потомству.

Каждый ген определяет какой-то конкретный признак, который не зависит от других. Они способны взаимодействовать. Это возможно благодаря тому, что происходит генов. При объединении в генотип они выступают в виде системы. Основными отношениями между ними являются доминантность и рецессивность.

Генотип человека - это тысячи признаков (система), которые умещаются всего в 46 хромосомах. Каждая из них содержит огромное количество генов (не менее 30 тысяч).

Степень развития конкретного признака может быть обусловлена влиянием не одного гена, а целого ряда, которые соединяются между собой свободным образом. Такое взаимодействие генов принято называть полимерией (многосложностью). По такому механизму происходит наследование цвета кожи, волос и сотен других признаков.

Благодаря такому количеству генов обеспечивается жизнедеятельность и развитие дефинитивных организмов, состоящих из разнообразных типов специализированных дифференцированных клеток. У человека идентифицировано около 200 типов клеток, имеющих дополнительные подразделения на ряд более специализированных функционально и морфологически типов клеток.

Соединение генов в одной хромосоме определяется термином сцепление генов. Все относящиеся к одной группе сцепления гены наследуются вместе при образовании гамет.

В разных группах сцепления количество генов неодинаковое. Дигибридное взаимодействие характеризуется тем, что такое сцепление не подчиняется Однако полное сцепление встречается довольно редко. Как правило, в потомстве представлены все четыре фенотипа.

Выделяют аллельное и Аллели - это формы одного и того же гена.

Аллельное — взаимодействие входящих в одну аллельную пару генов. Проявление признака определяется не только взаимоотношениями доминантности, но и числом генов в генотипе.

Аллельные гены способны создавать такие связи, как (когда в фенотипе гетерозигот есть продукт только одного гена) и неполное (фенотип гетерозигот отличается от фенотипа гомозигот по и рецессивному, принимая среднее (промежуточное) значение по отношению к ним. Кодоминирование - такое взаимодействие генов аллельных, когда гетерозиготы в фенотипе обладают продуктом обоих.

Неаллельное — совместное влияние двух (нескольких) неаллельных генов. Может выражаться в форме эпистатического, комплементарного, полимерного или модифицирующего взаимодействия.

Взаимодействие неаллельных генов может проходить по-разному, поэтому выделяют несколько типов.

Комплементарное - взаимодействие самостоятельно менделирующих в одном генотипе генов и вызывающих проявление какого-либо одного признака.

Полимерное - это аддитивное влияние целого ряда неаллельных генов на формирование определенного признака, что вызывает вариационный непрерывный ряд по количественному выражению. Полимерия бывает кумулятивной и некумулятивной. В первом случае проявление признака определяется числом доминантных аллелей полимерных генов, которые содержатся в генотипе. Во втором случае степень развития признака определяется только лишь наличием доминантных аллелей и не зависит от их количества.

Эпистатическое - подавление одного гена доминантным аллелем другого, неаллельного первому. Или подавление действия доминантного и рецессивного аллеля в гипостатичном аллелем эпистатического, находящегося в гомозиготном состоянии.

Комплементарное - признак развивается при взаимном действии 2-х доминантных генов, которые по отдельности развития признака не вызывают.

Модифицирующее — изменение действия главных генов неаллельными по отношению к ним модификаторами. Один ген может выступать главным в контролировании развития какого-то признака и модификатором по отношению к развитию другого признака.

Взаимодействие генов наблюдается всегда, когда несколько генов влияют на формирование определенного состояния какого-либо признака организма.

Аллельные гены - парные, определяющие развитие взаимоисключающих признаков (высокий и низкий рост, курчавые и гладкие волосы, голубые и черные глаза у человека).
1. Взаимодействие неаллельных генов: развитие какого-либо признака под контролем нескольких генов - основа новообразования при скрещивании. Пример: появление серых кроликов (АаВЬ) при скрещивании черного (ААЬЪ) и белого (ааВВ). Причина новообразования: за окраску шерсти отвечают гены Аа (А - черная шерсть, а - белая), за распределение пигмента по длине волос - гены ВЬ (В - пигмент скапливается у корня волоса, Ъ - пигмент равномерно распределяется по длине волоса).
2. Множественное действие генов - влияние одного гена на формирование ряда признаков. Пример: ген, отвечающий за образование красного пигмента в цветке, способствует его появлению в стебле, листьях, вызывает удлинение стебля, увеличение массы семян.

28. Генотип - совокупность генов данного организма, которая, в отличие от понятий генома и генофонда, характеризует особь, а не вид.

Фенотип - совокупность характеристик, присущих индивиду на определённой стадии развития. У диплоидных организмов в фенотипе проявляются доминантные гены.

Большинство генов проявляются в фенотипе организма, но фенотип и генотип различны по следующим показателям:

1. По источнику информации (генотип определяется при изучении ДНК особи, фенотип регистрируется при наблюдении внешнего вида организма).

2. Генотип не всегда соответствует одному и тому же фенотипу. Некоторые гены проявляются в фенотипе только в определённых условиях. С другой стороны, некоторые фенотипы, например, окраска шерсти животных, являются результатом взаимодействия нескольких генов по типу комплементарности.

Изменчивость - способность живых организмов приобретать новые признаки и свойства. Благодаря изменчивости, организмы могут приспосабливаться к изменяющимся условиям среды обитания.

Различают две основные формы изменчивости: наследственная и ненаследственная. Наследственная, или генотипическая, изменчивость - изменения признаков организма, обусловленные изменением генотипа. Она, в свою очередь, подразделяется на комбинативную и мутационную. Комбинативная изменчивость возникает вследствие перекомбинации наследственного материала (генов и хромосом) во время гаметогенеза и полового размножения. Мутационная изменчивость возникает в результате изменения структуры наследственного материала. Ненаследственная, или фенотипическая, или модификационная, изменчивость - изменения признаков организма, не обусловленные изменением генотипа.

Норма реакции - способность генотипа формировать в онтогенезе, в зависимости от условий среды, разные фенотипы. Она характеризует долю участия среды в реализации признака и определяет модификационную изменчивость вида.

29. Модификациями называют изменения фенотипа, вызванные влиянием окружающей среды и не связанные с изменениями генотипа. Модификационной изменчивости подвержены все признаки. Возникновение модификаций связано с тем, что такие важнейшие факторы среды, как свет, тепло, влага, химический состав и структура почвы, воздух, воздействуют на активность ферментов и в известной мере изменяют ход биохимических реакций, протекающих в развивающемся организме. Адаптивные модификации дают возможность организму выжить и оставить потомство в изменившихся условиях среды.

Наследственную изменчивость подразделяют на комбинативную и мутационную. Комбинативной называют изменчивость, в основе которой лежит образование рекомбинаций, т. е. таких комбинаций генов, которых не было у родителей. В основе комбинативной изменчивости лежит половое размножение организмов, вследствие которого возникает огромное разнообразие генотипов. Мутационной называется изменчивость самого генотипа. Мутации - это внезапные наследуемые изменения генетического материала, приводящие к изменению тех или иных признаков организма.

30. Комбинативной называют изменчивость, в основе которой лежит образование рекомбинаций, т. е. таких комбинаций генов, которых не было у родителей. В основе комбинативной изменчивости лежит половое размножение организмов, вследствие которого возникает огромное разнообразие генотипов. Практически неограниченными источниками генетической изменчивости служат три процесса:

Независимое расхождение гомологичных хромосом в первом мейотическом делении. (Появление зеленых гладких и желтых морщинистых семян гороха во втором поколении от скрещивания растений с желтыми гладкими и зелеными морщинистыми семенами - пример комбинативной изменчивости.)

Взаимный обмен участками гомологичных хромосом, или кроссинговер. Он создает новые группы сцепления. Рекомбинантные хромосомы, оказавшись в зиготе, способствуют появлению признаков, нетипичных для каждого из родителей.

Случайное сочетание гамет при оплодотворении.

Эти источники комбинативной изменчивости действуют независимо и одновременно, обеспечивая при этом постоянную «перетасовку» генов, что приводит к появлению организмов с другими генотипом и фенотипом.

Биологическое значение: обеспечивает бесконечное разнообразие особей внутри вида и неповторимость каждой из них.

Половой процесс: рекомбинация перераспределение генетического материала родителей, в результате чего у потомков появляются новые сочетания генов, определяющие новые сочетания признаков. Рекомбинация – основа комбинативной изменчивости. У эукариотических организмов, размножающихся половым путём, рекомбинация происходит в мейозе при независимом расхождении хромосом и при обмене гомологичными участками между гомологичными хромосомами (кроссинговере). Рекомбинации бывают и в половых, и, гораздо реже, в соматических клетках. У прокариот (бактерий) и у вирусов существуют специальные механизмы обмена генами. Таким образом, рекомбинации – универсальный способ повышения генотипической изменчивости у всех организмов, создающий материал для естественного отбора.

Мутационной называется изменчивость самого генотипа. Мутации - это внезапные наследуемые изменения генетического материала, приводящие к изменению тех или иных признаков организма.

Генные мутации - изменения структуры генов. Поскольку ген представляет собой участок молекулы ДНК, то генная мутация представляет собой изменения в нуклеотидном составе этого участка. Генные мутации могут происходить в результате: 1) замены одного или нескольких нуклеотидов на другие; 2) вставки нуклеотидов; 3) потери нуклеотидов; 4) удвоения нуклеотидов; 5) изменения порядка чередования нуклеотидов. Эти мутации приводят к изменению аминокислотного состава полипептидной цепи и, следовательно, к изменению функциональной активности белковой молекулы.

Хромосомные мутации - изменения структуры хромосом. Перестройки могут осуществляться как в пределах одной хромосомы - внутрихромосомные мутации, так и между хромосомами - межхромосомные мутации.

Геномной мутацией называется изменение числа хромосом. Геномные мутации возникают в результате нарушения нормального хода митоза или мейоза.

Свойства мутаций: в настоящее время считается, что многие мутации не оказывают существенного влияния на жизнеспособность особей; такие мутации называются нейтральными. Нейтральность мутаций часто обусловлена тем, что большинство мутантных аллелей рецессивно по отношению к исходному аллелю. Однако существуют мутации, приводящие к гибели организма (летальные) или заметно снижающие его жизнеспособность (полулетальные). В определенных условиях мутации могут повышать жизнеспособность организмов (как в примере с серповидноклеточной анемией).

По способности передаваться при половом размножении различают соматические и генеративные мутации. Соматические мутации не затрагивают половые клетки и не передаются потомкам. В результате соматических мутаций возникают генетические мозаики. Генеративные мутации происходят в половых клетках и могут передаваться потомкам. При участии мутантных половых клеток образуются полностью мутантные организмы. Мутантный аллель может возвращаться в исходное состояние. Тогда первоначальная мутация называется прямой (например, переход А → а), а другая – обратной мутацией, или реверсией (например, обратный переход а → А).

Биологическое значение мутаций: прежде всего мутации оказывают влияние на эволюцию. Именно постоянное наличие мутаций имело решающее значение для эволюционного развития видов. В меняющихся условиях окружающей среды возникновение мутации, давшей начало организмам, лучше приспособленным к данным условиям, было одновременно шагом вперед.

Получение мутации: обычно мутагены подразделяют на три группы. Для искусственного получения мутаций используются физические и химические мутагены.

Ø Физические: рентгеновские лучи, гамма лучи, ультрафиолетовое излучение, высокие и низкие температуры и др.

Ø Химические: соли тяжелых металлов, алкалоиды, чужеродные ДНК и РНК, аналоги азотистых оснований нуклеиновых кислот и др.

Ø Биологические: вирусы, бактерии.

Генеративные мутации возникают в половых клетках, не влияют на признаки данного организма, проявляются только в следующем поколении.

Соматические мутации возникают в соматических клетках, проявляются у данного организма и не передаются потомству при половом размножении. Сохранить соматические мутации можно только путем бесполого размножения.

Слайд 2

Ген – структурная единица наследственной информации, контролирующая развитие определенного признака или свойств.

Слайд 3

Ген - материальный носитель наследственной информации, совокупность которых родители передают потомкам во время размножения.

Слайд 4

  • Взаимодействие генов
  • Полное доминирование
  • Неполное доминирование
  • Полимерия
  • Комплементарность
  • Кодоминирование
  • Кооперация
  • Эпистаз
  • Слайд 5

    • При полном доминировании доминантный аллель полностью подавляет действие рецессивного аллеля.
    • Расщепление по фенотипу в F2 3:1
    • Взаимодействие аллельных генов
    Полное доминирование
  • Слайд 6

    Наследование при неполном доминировании

    Слайд 7

    Оба аллеля – и доминантый, и рецессивный – проявляют своё действие, т.е. доминантный аллель не полностью подавляет действие рецессивного аллеля (промежуточный эффект действия)

    Взаимодействие аллельных генов

    Неполное доминирование

    Слайд 8

    Промежуточное наследование при неполном доминировании

    Слайд 9

    При кодоминировании (гетерозиготный организм содержит два разных доминантных аллеля, например А1 и А2 илиJA и JB), каждый из доминантных аллелей проявляет свое действие, т.е. участвует в проявлении признака.

    Расщепление по фенотипу в F2 1:2:1

    Взаимодействие аллельных генов

    Кодоминирование

    Слайд 10

    Примером кодоминирования служит IV группа крови человека в системе АВО: генотип –JA, JB, фенотип – АВ, т.е. у людей с IV группой крови в эритроцитах синтезируется и антиген А (по программе гена JA), и антиген В (по программе гена JB).

    Слайд 11

    • Подавление проявления генов одной аллельной пары генами другой.
    • Гены, подавляющие действие других неаллельных генов, называются супрессорами(подавителями).
    • Доминантный эпистаз (расщепление по фенотипу 13:3) и рецессивным (расщепление по фенотипу 9:3:4)
    • Эпистаз
    • Взаимодействие неаллельных генов
  • Слайд 12

    Эпистаз

    • Доминантный
    • Рецессивный
    • Расщепление по фенотипу в F2 13:3
    • Расщепление по фенотипу в F2 9:3:4
    • Наследование окраски оперения кур
    • Наследование окраски шерсти домовых мышей
  • Слайд 13

    Доминантный эпистаз

    Слайд 14

    Комплементарность

    Взаимодействие неаллельных генов

    Явление, когда признак развивается только при взаимном действии двух доминантных неаллельных генов, каждый из которых в отдельности не вызывает развитие признака

    Расщепление по фенотипу 9:7

  • Слайд 15

    • Явление, когда несколько неаллельных доминантных генов отвечают за сходное воздействие на развитие одного и того же признака.
    • Чем больше таких генов, тем ярче проявляется признак (цвет кожи, удойность коров)
    • Взаимодействие неаллельных генов
    • Полимерия
  • В состав генотипа человека входит огромное количество генов, которые несут информацию о свойствах и качествах нашего организма. Несмотря на такое большое количество, они взаимодействуют как единая целостная система.

    Из школьного курса биологии нам известны законы Менделя, который изучал закономерности наследования признаков. В ходе своих исследований ученый обнаружил доминантные гены и рецессивные. Одни способны подавлять проявление других.

    На самом деле взаимодействие генов далеко выходит за рамки менделевских законов, хотя все правила наследования соблюдаются. Можно увидеть разницу в характере расщепления по фенотипу, потому что может отличаться тип взаимодействия.

    Характеристики гена

    Ген является единицей наследственности, он имеет определенные признаки:

    1. Ген дискретен. Он определяет степень развития того или иного признака, в том числе и особенности биохимических реакций.
    2. Оказывает градуальное действие. Накапливаясь в клетках тела, может приводить к усилению или ослаблению проявления признака.
    3. Все гены строго специфичны, то есть отвечают за синтез определенного белка.
    4. Один ген может оказывать множественное действие, воздействуя на развитие сразу нескольких признаков.
    5. Разные гены могут принимать участие в формировании одного признака.
    6. Все гены между собой могут взаимодействовать.
    7. На проявление действия гена оказывает влияние внешняя среда.

    Гены способны действовать на двух разных уровнях. Первый - это сама генетическая система, в которой определяется состояние генов и их работа, стабильность и изменчивость. Второй уровень можно рассматривать уже при работе в клетках организма.

    Виды взаимодействия аллельных генов

    Все клетки нашего организма имеют диплоидный набор хромосом (его еще называют двойным). 23 хромосомы яйцеклетки сливаются с таким же количеством хромосом сперматозоида. То есть каждый признак представлен двумя аллелями, вот их и называют аллельными генами.

    Формируются такие аллельные пары при оплодотворении. Они могут быть как гомозиготными, то есть состоящими из одинаковых аллелей, так и гетерозиготными, если входят разные аллели.

    Формы взаимодействия аллельных генов наглядно представлены в таблице.

    Тип взаимодействия Характер взаимодействия Пример
    Полное доминирование Доминантный ген полностью подавляет проявление рецессивного. Наследование цвета горошины, цвета глаз у человека.
    Неполное доминирование Доминантный ген не полностью подавляет проявление рецессивного гена. Окраска цветов у ночной красавицы (цветка).
    Кодоминирование В гетерозиготном состоянии каждый из аллельных генов вызывает развитие контролируемого им признака. Наследование группы крови у человека.
    Сверхдоминирование В гетерозиготном состоянии признаки проявляются ярче, чем в гомозиготном. Ярким примером является явление гетерозиса в животном и растительном мире, серповидно-клеточная анемия у человека.

    Полное и неполное доминирование

    О полном доминировании можно говорить в том случае, когда один из генов может обеспечить проявление признака, а второй не в состоянии это сделать. Сильный ген получает название доминантного, а его оппонент - рецессивного.

    Наследование в этом случае происходит полностью по законам Менделя. Например, окраска семян гороха: мы в первом поколении видим все горошины зеленого цвета, то есть эта окраска является доминантным признаком.

    Если при оплодотворении вместе попадают ген карих глаз и голубых, то у ребенка глаза будут карими, потому что эта аллель полностью подавляет ген, который отвечает за голубые глаза.

    При неполном доминировании можно видеть у гетерозигот проявление промежуточного признака. Например, при скрещивании гомозиготной по доминантному признаку ночной красавицы с красными цветами с такой же особью, только с белым венчиком, можно в первом поколении видеть гибриды розового цвета. Доминантный красный признак не полностью подавляет проявление рецессивного белого, поэтому в итоге и получается что-то среднее.

    Кодоминирование и сверхдоминирование

    Такое взаимодействие генов, при котором каждый обеспечивает свой признак, называется кодоминированием. Все гены в одной аллельной паре абсолютно равнозначны. Ни один не может подавить действие другого. Именно такое взаимодействие генов мы наблюдаем при наследовании групп крови у человека.

    Ген О обеспечивает проявление 1-й группы крови, ген А - второй, ген В - третей, а если гены А и В попадают вместе, то ни один не может подавить проявление другого, поэтому формируется новый признак - 4 группа крови.

    Сверхдоминирование - это еще один пример взаимодействия аллельных генов. В этом случае гетерозиготные особи по данному признаку имеют более яркое его проявление по сравнению с гомозиготными. Такое взаимодействие генов лежит в основе такого явления, как гетерозис (явление гибридной силы).

    При скрещивании двух сортов томатов, например, получается гибрид, который наследует признаки обоих исходных организмов, так как признаки переходят в гетерозиготное состояние. В следующем поколении уже пойдет расщепление по признакам, поэтому такое же потомство получить не удастся.

    В животном мире можно и вовсе наблюдать бесплодие таких гибридных форм. Такие примеры взаимодействия генов можно встретить часто. Например, при скрещивании осла и кобылицы рождается мул. Он унаследовал все лучшие качества своих родителей, а вот сам иметь потомство не может.

    У человека по этому типу наследуется серповидно-клеточная анемия.

    Неаллельные гены и их взаимодействие

    Гены, которые расположены в разных парах хромосом, называются неаллельными. Если они оказываются вместе, то вполне могут оказывать друг на друга влияние.

    Взаимодействие неаллельных генов может осуществляться по-разному:

    1. Комплементарность.
    2. Эпистаз.
    3. Полимерное действие.
    4. Плейотропность.

    Все эти типы взаимодействия генов имеют свои отличительные особенности.

    Комплементарность

    При таком взаимодействии один доминантный ген дополняет другой, который также доминантный, но не является аллельным. Попадая вместе, они способствуют проявлению совершенно нового признака.

    Можно привести пример проявления окраски у цветов душистого горошка. Наличие пигмента, а значит, окраски у цветка обеспечивается сочетанием двух генов - А и В. Если хоть один из них будет отсутствовать, то венчик будет белым.

    У людей такое взаимодействие неаллельных генов наблюдается при формировании органа слуха. Нормальный слух может быть только, если присутствуют оба гена - D и E - в доминантном состоянии. При наличии только одного доминантного или обоих в рецессивном состоянии слух отсутствует.

    Эпистаз

    Такое взаимодействие неаллельных генов полностью противоположно предыдущему взаимодействию. В этом случае один неаллельный ген способен подавлять проявление другого.

    Формы взаимодействия генов в этом варианте могут быть разные:

    • Доминантный эпистаз.
    • Рецессивный.

    При первом типе взаимодействия один доминантный ген подавляет проявление другого доминантного. В рецессивном эпистазе участвуют рецессивные гены.

    По такому типу взаимодействия происходит наследование окраски плодов у тыквы, окраски шерсти у лошадей.

    Полимерное действие генов

    Такое явление можно наблюдать, когда несколько доминантных генов отвечают за проявление одного и того же признака. Если присутствует хоть одна доминантная аллель, то признак обязательно проявится.

    Виды взаимодействия генов в этом случае могут быть разными. Одним из них является накопительная полимерия, когда степень проявления признака зависит от количества доминантных аллелей. Так происходит наследование окраски зерен пшеницы или цвета кожных покровов у человека.

    Всем известно, что все люди имеют разный цвет кожи. У одних она совершенно светлая, некоторые имеют смуглую кожу, а представители негроидной расы - и вовсе черную. Ученые придерживаются мнения, что цвет кожи определяется наличием трех разных генов. Например, если в генотипе присутствуют все три в доминантном состоянии, то кожа самая темная, как у негров.

    У европеоидной расы, судя по цвету нашей кожи, доминантные аллели отсутствуют.

    Уже давно выяснили, что взаимодействие неаллельных генов по типу полимерии влияет на большинство количественных признаков у человека. Сюда можно отнести: рост, массу тела, интеллектуальные способности, устойчивость организма к инфекционным заболеваниям и некоторые другие.

    Можно только отметить, что развитие таких признаков зависит от условий среды. У человека может быть предрасположенность к лишнему весу, но при соблюдении режима питания есть возможность избежать этой проблемы.

    Плейотропное действие генов

    Уже давно ученые убедились, что типы взаимодействия генов достаточно неоднозначные и очень разносторонние. Порой невозможно предсказать проявление тех или иных фенотипических признаков, потому что неизвестно, как гены провзаимодействуют между собой.

    Это утверждение только подчеркивается тем явлением, что один ген может оказывать влияние на формирование нескольких признаков, то есть иметь плейотропное действие.

    Уже давно замечено, что наличие красного пигмента в плодах свеклы обязательно сопровождается присутствием такого же, но только в листьях.

    У человека известно такое заболевание, как синдром Марфана. Оно связано с дефектом гена, который отвечает за развитие соединительной ткани. В итоге получается, что везде, где есть в организме эта ткань, могут наблюдаться проблемы.

    У таких больных длинные «паучьи» пальцы, диагностируется вывих хрусталика глаза, порок сердца.

    Влияние факторов среды на действие генов

    Влияние внешних факторов среды на развитие организмов невозможно отрицать. К ним можно отнести:

    • Питание.
    • Температуру.
    • Свет.
    • Химический состав почвы.
    • Влажность и т. д.

    Факторы внешней среды являются основополагающими в процессах отбора, наследственности и изменчивости.

    Когда мы рассматриваем формы взаимодействия аллельных генов или неаллельных, то всегда нужно учитывать еще и воздействие среды. Можно привести такой пример: если растения примулы скрещивать при температуре 15-20 градусов, то все гибриды первого поколения будут иметь розовую окраску. При температуре 35 градусов все растения получатся белыми. Вот вам и влияние фактора внешней среды на проявление признаков, здесь уже не важно, какой ген является доминантным. У кроликов, оказывается, цвет шерсти также зависит от температурного фактора.

    Ученые давно работают над вопросом, как можно управлять проявлениями признаков, оказывая различное внешнее воздействие. Это может обеспечить возможность контролировать развитие врожденных признаков, что особенно актуально для человека. Почему бы не воспользоваться своими знаниями, чтобы не дать некоторым наследственным недугам проявиться?

    Все виды взаимодействия аллельных генов, да и не только их, могут быть настолько разными и многогранными, что невозможно отнести их к какому-то конкретному типу. Можно утверждать только одно, что все эти взаимодействия одинаково сложны как у людей, так и у представителей всех видов растений и животных.