Происхождение полезных ископаемых на Земле. Полезные ископаемые и их свойства

Осадочными называются те горные породы, которые произошли от разложения вулканических пород или от отложений органических веществ.

Образование осадочных пород

Осадочные породы образуются под влиянием совокупности факторов, к числу которых относятся:

  • Текущая вода.
  • Ветер.
  • Перепады температур.
  • Деятельность микроорганизмов.

Все перечисленные факторы способствуют разложению на мелкие частицы вулканических пород или органических веществ. Затем полученные частицы снова откладываются в недрах, и, со временем, под воздействием температур, давления и т.д. они снова срастаются. Так образуются осадочные породы из вулканических.

В случае же, когда основой служат органические вещества, частицы мертвых животных или растений постепенно откладываются большими слоями, захватывая друг друга. Под влиянием воды, разных газов, минералов, солей и т.д. они сжимаются и приобретают форму слитной породы. К этому типу, например, относится известняк, в структуре которого можно разглядеть ракушки (т.к. данный камень образуется из мертвых ракообразных).

Уголь и торф тоже относятся к осадочным породам. При этом уголь сформировался множество столетий назад из погибших деревьев, закрытых огромным слоем грязи, а торф - из мертвых частиц болотных мхов.

Места распространения осадочных пород

Поскольку осадочные породы образуются под воздействием внешних влияний, они, в основном, залегают на глубине всего лишь в несколько километров земной коры, т.е. в поверхностной части. Например, такие породы, как известняки, мел, глина могут находиться прямо на самой поверхности Земли. Другие же (в том числе, уголь) начинают формироваться только в том случае, если сверху были закрыты слоем грунта, поэтому их добывают на глубине от нескольких десятков метров до нескольких километров.

Одним из самых глубокорасположенных видов осадочных пород является нефть. Это связано с тем, что она жидкая. В некоторых случаях, когда она образуется над полостями земной коры (например, в местах разлома тектонических плит), то просачивается через грунт, достигая глубины до 6-7 километров).

Главная > Диплом

1.2.4.Полезные ископаемые осадочного происхождения.

Наибольшее количество видов минерального сырья в пределах Архангельской области связано с осадочными породами, поскольку они покрывают большую ее часть.

Нефть и горючий газ.

Они залегают на территории Ненецкого автономного округа и приурочены к многокилометровой толще осадочных пород Печорской плиты. Среди полезных компонентов выделяются собственно нефть, горючий газ как в свободном виде, так и растворенный в нефти, парафин и сера. Первые геофизические исследования на нефть и газ в округе начаты в 1956 году. В 1966 году открыто первое в ненецкой тундре месторождение газа, которое назвали Шапкинское. В результате широких геологоразведочных работ на территории Ненецкого автономного округа создана реальная сырьевая база. Уже сегодня геология превратилась в ведущую отрасль народного хозяйства, в которой занята треть работоспособного населения региона. Открыто 75 месторождений: 64 нефтяных, 6 нефтегазоконденсатных, 3 газоконденсатных, 1 газовое, 1 газонефтяное. Начальные суммарные ресурсы составляют 2407 миллионов тонн нефти, 1170 миллиардов кубометров свободного газа, 44 миллиона тонн газоконденсата, 133 миллиарда кубометров растворенного газа. По богатству недр нефтегазосырьевыми ресурсами Ненецкий округ стоит на третьем месте после Ханты-Мансийского и Ямало-Ненецкого округов. По сумме сырья на долю Ненецкого округа приходится около 53% нефти и газа Тимано-Печорской провинции. Несмотря на то, что в округе открыто 75 месторождений углеводородного сырья, в эксплуатации в настоящее время находится 4 месторождения: Песчаноозерское (о.Колгуев), Харьягинское, Ардалинское и Василковское. К промышленному освоению подготовлено 14 месторождений, остальные находятся в различных стадиях поисково-разведочных работ. Нефть на территории округа не перерабатывается и в сыром виде транспортируется за его пределы. На шельфе Баренцева моря открыты Приразломное месторождение нефти и Штокмановское месторождение газа.По результатам поисково-разведочных работ потенциал шельфа Баренцева моря сравним по ресурсам с Западно-Сибирской нефтегазоносной провинцией. В принципе шельф составляет с Тимано-Печорской провинцией единую крупную суперпровинцию, которая является уникальной сырьевой базой углеводородного сырья. К углеводородным ресурсам округа проявляют большой интерес нефтяные компании США, Норвегии, Финляндии, Великобритании. На Ардалинском месторождении с 1994 года ведет добычу нефти СП "Полярное Сияние", основанное "Архангельскгеологией" и американской компанией "Коноко"

Каменный уголь

На юго-западном склоне Пай-Хоя в бассейне реки Каратаиха открыто несколько непромышленных месторождений угля: Талатинское, Вась-Ягинское, Янгарейское, Хейягинское, Нямдоюсское, Силовское. На северо-восточном склоне Пай-Хоя и на реке Волонге на Северном Тимане также установлены проявления углей. Маломощные их прослойки промышленного значения не имеют из-за высокой зольности. В самые последние годы в пределах Ненецкого автономного округа удалось проследить краевую часть шахтного поля с высококачественными углями крупнейшей в Воркуте шахты Воргашорская. На территории Ненецкого округа широко распространены горючие сланцы. Их запасы оцениваются порядка 5 миллиардов тонн.

Бокситы

Боксит состоит главным образом из гидратированных оксида алюминия (Al 2 O 3 nH 2 O) и оксида железа (III) (Fe 2 O 3 mH 2 O), а также кремнезема SiO 2 и различных примесей. В нашей области месторождения бокситов разведаны в Плесеком районе. Это Иксинское, Булатовское, Плесецкое и Дениславское месторождения. Они являются одними из крупнейших месторождений боксита в России и единственными в Европе. Отличительной чертой североонежских бокситов является наличие в их составе, кроме алюминия, ряда ценных попутных компонентов. Залежи бокситов находятся на небольшой глубине и добываются открытым способом. Боксит-это главное сырье для промышленного получения алюминия. Кроме того, североонежские бокситы используются для производства высококачественных абразивов и электрокорунда, а также огнеупорных материалов.

Гипс и ангидрит.

Особенно велики в Архангельской области запасы гипса и ангидрита. Гипс-это минерал, по химическому составу-сульфат кальция, гидратированный двумя молекулами воды CaSO 4 2H 2 O Ангидрит-это минерал, представляющий собой безводный сульфат кальция. Крупнейшие месторождения гипса и ангидрита сосредоточены в долинах рек Северная Двина, Пинега и Кулой. Наиболее крупными месторождениями являются:Звозское (на Северной Двине), Мехреньгское (на реке Мехреньге в Плесецком районе), Пинежское и Сийское (в бассейне реки Пинега). Гипс находит широкое применение в народном хозяйстве. Он является ценным химическим сырьем и используется в производстве серной кислоты, в целлюлозно-бумажной промышленности в качестве наполнителя для бумаги, в строительной промышленности для производства алебастра и цемента, в сельском хозяйстве для гипсования почв, в металлургии, в медицине, для лепки и отливочных работ, в производстве красок. Селенит (волокнистый гипс) используется в камнерезной промышленности в качестве облицовочного и поделочного камня.

Карбонатные породы (известняк и доломит).

По химическому составу известняк представляет собой карбонат кальция CaCO 3 , а доломит- карбонат кальция-магния CaMg(CO 3) 2 . Они являются сырьем для получения цемента, применяются в целлюлозно-бумажной промышленности, в сельском хозяйстве- для известкования почв, для получения извести, в качестве бутового камня и щебня. Крупнейшими месторождениями карбонатных пород являются: Орлецкое в Холмогорском районе, Обозерское, Швакинское, Кямское и Емецкое в Плесецком районе. Запасы карбонатного сырья в Архангельской области достаточно велики.

Глины кирпичные.

Они используются для производства кирпича и черепицы. Наиболее пригодными месторождениями из числа разведанных являются: в районе г. Архангельска- Уемское и Глинникское, в Онежском районе- Андское, в Холмогорском районе- Малотовринское, Ухостровское и Хоробицкое, в Вельском районе- Важское и Кочевское, в Красноборском- Красноборское, в Верхнетоемском- Лебашское,в Мезенском- Мезенское, в Шенкурском- Павловское, в Каргопольском- Полуборское, в Виноградовском- Семеновское, в Устьянском- Шангальское, в Пинежском- Шотовское, в Ненецком автономном округе- Нарьян-Марское.

Глины керамзитовые.

Некоторые разновидности легкоплавких глин и суглинков пригодны для производства керамзита- искусственного пористого мелкокускового материала, применяемого для тепло- и звукоизоляции, в качестве заполнителя для бетона. В Архангельской области известны месторождения: Казарма (Котласский район), Кудемское (Приморский район), Тесовка (Онежский район), Березники (Вилегодский район), Октябрьское (Устьянский район).

Глины цементные.

Они являются ценным сырьём, используемым в качестве одного из компонентов при производстве цемента.Месторождения расположены в Плесецком районе (Тимме и Шелекса).

Строительные пески и гравий.

Пески, гравий и валуногалечный материал необходимы для дорожного строительства и используются в качестве заполнителей для бетона и строительных растворов. Различные по размерам залежи их встречаются на территории области повсеместно. Наиболее крупные скопления состовляют месторождения Норменга, Облоозеро, Подюга- Звенячье, Нименга, Малая Речка, Няндома-3, Няндома-5 и др. Все они разрабатываются открытым способом (карьер).

Металлические рудопроявления.

В осадочных породах известны и проявления металлов. Стронций в виде минерала целестина (SrSO 4) встречается у деревни Вальтево на реке Пинеге. Проявление марганца известны на Пай-Хое.

Подземные воды.

По составу и использованию подземные воды можно условно разделить на 3 большие группы: пресные для хозяйственного и питьевого водоснабжения, минеральные лечебно-питьевые и рассолы- сырьё для хим. переработки с целью получения пищевой соли и различных веществ для технического использования.

Пресные воды.

Разведаны, подсчитаны и утверждены запасы 16 крупнейших месторождений пресных вод без учёта многочисленнейших выходов пресных вод в колодцах, источниках, скважинах, используемых для местных нужд в деревнях и посёлках. По своему составу пресные воды относятся в основном к гидрокарбонатному типу. Большинство месторождений связано с водоносным горизонтом известняков и доломитов. Пресные воды используются для хозяйственно-питьевого водоснабжения в Каргополе, Няндоме, Вельске,Нарьян-Маре и других населённых пунктах. Одним из крупнейших в европейской части России является Пермиловское и Тундро-Ломовое месторождения подземных пресных вод.Они расположены соответственно в 100 и 50 км от Архангельска. Воды в них слабонапорные, по составу гидрокарбонатные с минерализацией 0,3- 0,7 г/л. Залегая на глубинах в несколько десятков метров, они достаточно надёжно защищены с поверхности и пополняются за счёт атмосферных осадков и подземных вод с соседних участков.Запасы пресной воды в данных месторождениях достаточно велики и могут обеспечить водоснабжение Архангельска и Северодвинска в течение многих лет.

Минеральные подземные воды.

Они достаточно разнообразны по своему химическому составу. Уже много веков используются хлоридно-натриевые, сероводородные источники и иловые грязи Сольвычегодска.В последние годы Сольвычегодский курорт начал применять для лечения разведанные геологами бромные воды. Примерно в XVII века население Севера России в лечебных целях пользовалось водами источника Талец в долине р. Верховки на Онежском п-ове. Воды его по составу близки к нарзанным водам Северного Кавказа. В последние годы здесь разведано Куртяевское месторождение гидрокарбонатно-хлоркальциевых натриевых вод. В 80е гг XX века разнообразные типы минеральных лечебных вод найдены и разведаны в окрестностях Архангельска. Так,на курорте Беломорье в 40 км от Архангельска используется бромная хлоридная кальциево-натриевая вода для питья и ванн. На основе данного месторождения производится разлив минеральной воды "Беломорская". В Северодвинске также найдены минеральные воды для питья и ванн нескольких типов. Они используются в лечебных учереждениях Архангельска и Северодвинска.В санатории "Сосновка" под Вельском используется хлоридная бромоборная вода. В 1985 году в городе Нарьян-Маре в 3 скважинах- на территории рыбокомбината, у аэропорта и в поселке Факел- была найдена минеральная вода. В 1995 году после закупки и отладки оборудования началс выпуск минеральной воды "Нарьян-Марская-1". Вода из скважины разводится на 3 части пресной водой, фильтруется и охлаждается до плюс 4 градусов для лучшего насыщения углекислым газом в сатураторе.После этого вода направляяется на розлив.

Рассолы.

Это сильноминерализованные подземные воды.В пределах области они были известны и широко использовались для получения соли ещё в XII веке. На большинстве старых месторождений они давно выработаны и в настоящее время не добываваются. В последние годы крупное месторождение солей более 100 г/л разведано в районе Коряжмы. Эксплуатация этого месторождения позволит получать в больших кол-вах пищевую соль и ряд других химических веществ для технических нужд. В районе Архангельска изучено месторождение йодных вод, пригодных для получения твёрдого йода. Геологические исследования Архангельской области продолжаются и можно ожидать открытия новых месторождений полезных ископаемых. Месторождения полезных ископаемых, которые встречаются на территории Архангельской области, отмечены на карте, которая помещена в приложении 2 данной работы.

1.2.5. Перспективы использования полезных ископаемых Архангельской области в народном хозяйстве.

Недра Европейского Севера богаты природными ресурсами. Проведённые геолого-разведочные работы показывают, что Архангельская область занимает не только центральное географическое положение на Европейском Севере, но и наиболее важное по перспективам развития минерально-сырьевого и топливно-энергетического комплексов. Возможности использования полезных ископаемых в настоящее время используются далеко не полностью. Пока невелика мощность бокситодобывающих рудников. Большие перспективы имееет развитие металлургического комплекса. т.к. за пределы области выгоднее вывозить продукцию, а не руду. Промышленное освоение северных бокситов может обеспечить достаточное увеличение производства алюминия и создание надёжной сырьевой базы для других глинозёмных заводов нашей страны. Есть основания говорить о возможности формирования таких промышленных районов, как Тимано-Канинского, Новоземельско-Амдерминского, района Ветряного Пояса и др. Здесь известны уже амдерминские месторождения флюоритов, тиманских агатов, имеются неплохие предпосылки открытия месторождений меди и полиметаллов на Новой Земле, никеля, титана, марганца, полиметаллов, янтаря, драгоценных камней и других важнейших ископаемых на Тимане, Пай-Хое, Ветряном Поясе. В Коношском районе вскрыты залежи железных руд. Разведочные работы показали, что область богата такими полезными ископаемыми, которые необходимо в первую очередь использовать для внутренних нужд края. Это нерудное сырьё и подземные воды. Промышленность строительных материалов развита в области недостаточно. Ощущается их острый дефицит. Наша область обладает достаточными запасами сырья для промышленности строительных материалов. Базальты горы Мяндуха могут быть использованы не только для производства щебня, но и в качестве облицовочного камня, для каменного ллитья, производства минерального холста, картона, ваты. Гипс может использоваться не только в качестве строительного материала, но и в качестве формовочного, поделочного, а тпкже в сельском хозяйстве, бумажной промышленности. Очень многочисленны месторождения песчано-гравийного материала, который пригоден для строительства дорог. Думая о перспективах развития края, нужно учитывать, что минерально-сырьевой комплекс области будет давать несравненно большую отдачу, если будут решены вопросы не только добычи, но и переработки природного сырья.

1.3. Методы изучения минералов.

Для определения (диагностики) минералов существует комплекс различных методов, начиная от самых простых, поверхностных, и кончая детальными исследованиями с применением особых приборов. В практике наиболее простым является определение минералов по внешней форме- морфологическим особенностям кристаллов и их агрегатов. Но это возможно лишь в тех редких случаях, когда форма минерала типична и он представлен достаточно крупными кристаллами или однородными мономинеральными агрегатами. Для определения минерала одних морфологических особенностей бывает недостаточно, необходимо применять более сложные методики, например изучения комплекса его физических свойств. Простейшие химические реакции помогают установить наличие или отсуствие в минерале отдельных химических элементов.

1.3.1. Методы изучения физических свойств.

Для установления принадлежности данного образца к определённому виду внимательно изучают внешнюю форму и физические свойства минералов по совокупности характерных признаков, используя специальный справочник- определитель минералов. Ход определения минерала следующий. Прежде всего устанавливается твёрдость минерала. Для этого испытуемый минерал чертят по известным минералам или по предметам с известной твёрдостью. Затем определяют блеск минерала, для этого надо найти свежую поверхность раскола. Отмечают цвет минерала и цвет черты, характер излома. По комплексу физических свойств определяют минерал. Комплекс физических свойств минералов Архангельской области приведён в приложении данной работы.

1.3.2. Методы изучения химического состава.

В полевых условиях можно сделать предварительный качественный анализ. Для химического анализа часто берут растворы, получаемые после обработки руд и минералов кислотами, и действуют на них также растворами реактивов. Но в полевых условиях дистиллированную воду, необходимую для приготовления растворов, достать невозможно. К тому же опыт показывает, что химические реакции можно проводить и между твёрдыми веществами, если их растереть (метод растирания- один из сухих методов качественного анализа). Ещё в 19 веке профессор Казанского университета Флавицкий Ф.М. очень убедительно доказал, что все реакции, которые до этого проводились в растворах, удаются и при проведении их между твёрдыми веществами. Флавицкий даже изобрёл карманную химическую лабораторию, которой можно было пользоваться при проведении химических реакций. В ней использовались чистые соли. Но выделить из руды или минерала соль какого-либо металла в чистом виде, чтобы провести реакцию между твёрдыми веществами, крайне трудно. А что если проводить реакцию прямо с минералом? Практика подтвердила, что в большинстве случаев это можно делать. Но иногда реакция может и не произойти. Как быть тогда? Как говорилось выше, для получения растворов на руды и минералы действуют кислотами. А есть ли возможность разложить их без кислот? Оказывается, можно. Как известно, соли аммония при нагревании разлагаются. Например, сульфат аммония разлагается на аммиак, оксид серы (VI) и воду. Хлорид аммония разлагается на аммиак и хлороводород. Благодаря этой особенности солей аммония, их используют для разложения минералов. При нагревании минералов с сульфатом аммония образуются сульфаты тех металлов, которые входили в состав руды. После разложения масса имеет светло-серый цвет. Слишком перегревать массу нельзя, т.к. некоторые сульфаты при сильном нагревании разлагаются до оксидов. При разложении минерала хлоридом аммония образуются хлориды металлов. Но нужно учесть, что некоторые хлориды при сильном нагревании улетучиваются. Это хлорид железа (III), хлорид алюминия, хлорид титана (IV), хлорид сурьмы (V) и некоторые другие. Таким образом, нужно уметь правильно подобрать аммонийную соль, которая была бы пригодна для разложения руд и минералов. Аналитические реакции можно проводить на поверхности минералов. Для этого отбивают геологическим молотком кусок минерала и проводят реакцию на месте свежего излома. Можно также выбранное место на минерале вначале осторожно зачистить стальным ножом, чтобы снять поверхностный слой, и проводить реакцию на обнажённой поверхности. На зачищенное место или свежий излом помещают немного нужного реактива и растирают его на возможно малой площадке стеклянной палочкой. Важно, чтобы конец стеклянной палочки был не закруглённым, а плоским, но без острых краёв. Если реакция на поверхности не дала ожидаемого результата, то это не значит, что определяемый элемент отсуствует. Тогда проводят реакцию с измельчённым минералом. Небольшую порцию минерала помещают в ступку и растирают пестиком как можно тщательнее. Затем порошок переносят в фарфоровый тигель, добавляют требуемый реактив и смесь осторожно и очень тщательно растирают. Иногда массу нужно увлажнить дыханием. Для этого на тигелёк дышат и отводят его ото рта во время вдоха, чтобы порошкообразные реактивы не попали в дыхательные пути. Увлажнение полезно делать и добавлением в тигель капли дистиллированной воды. Если же реакция с измельчённым минералом не даёт положительного результата, измельчённый образец разлагают нагреванием с сульфатом аммония. Если разложение с первого раза не закончится, то добавляют новую порцию сульфата аммония и нагревание продолжают. Нагревание продолжать до прекращения выделения белого дыма- оксида серы (VI).

1.3.3. Результаты исследования минералов.

В ходе работы были исследованы физические свойства и химический состав 13 минералов. Все они встречаются на территории Архангельской области. Из них 7 минералов образуют месторождения, пригодные для разработки в промышленных масштабах, а 6 минералов образуют рудопроявления, не пригодные для промышленной разработки. Из физических свойств минералов исследованы: твёрдость, блеск, прозрачность, цвет минерала, цвет черты, излом, плотность, хрупкость. Химический состав исследован сухими и мокрыми методами. Из 13 минералов 1 подвергнут только сухому анализу; 8 минералов- только мокрому анализу; 4-и сухому, и мокрому. Методики проведения анализа помещены в приложении. Таблица.Качественный анализ минералов и горных пород Архангельской области.

Минералы

химическая формула

анализ сухим методом

анализ мокрым методом

1 Ангидрит
2 Антимонит
3 Боксит

Al 2 O 3 H 2 O

4 Галенит
5 Гипс

CaSO 4 2H 2 O

6 Доломит

Происхождение полезных ископаемых на Земле.

Гипотеза.

К существованию на Земле полезных ископаемых мы так привыкли, что и не помышляем задумываться: «Как они появились на Земле?». Считаем, что всё это естественно, как утро после ночи. Земля, конечно, создала полезные ископаемые для того, чтобы появившийся среди животного мира Земли «гомо сапиенс», смог ими воспользоваться для прогресса в своей жизни и деятельности, и создания для себя комфортных условий проживания, оправдывая высказывание, что человек - это венец творения Природы. Но давайте проследим путь - откуда и что появилось.

По современным научным знаниям Земля устроена следующим образом. В её центре находится ядро, состоящее в основном из железа, кремния и никеля. Его радиус около 3,5 тыс. км. Выше ядра расположена мантия толщиною примерно 2900 км., вещество которой состоит преимущественно из кислорода, магния, кремния и небольшого количества железа. В ней также присутствует и ряд других элементов, но все они вместе взятые составляют лишь 10% от первых четырёх. Всё это укрыто земной корой, средняя толщина которой примерно 35 км. . (Кора тоньше под океанами и толще под горами). На 99% земная кора состоит из восьми элементов, а именно: кислород - 62,5 %, кремний - 21 %, алюминий - 6,5 % и железо, магний, кальций, натрий и калий - количество каждого из них примерно от1,5% до 2%.

Как видно, всё имеет своё место, свой химический состав и приспособлено к своему местоположению. Температуры в глубинах Земли сейчас тоже не вызывают опасений. Они стабилизировались. Внутреннее вещество находится в состоянии остывания, которое продолжается примерно миллиард лет. Конечно, пока ещё существуют очаги активной вулканической деятельности, но они имеют локальный, а не глобальный характер. В мантии под корой температура уже ниже температуры расплава вещества. Под материками она 600-700 0 С, однако, с увеличением глубины температура повышается и в слое Гутенберга она уже 1500-1800 0 С, а в ядре - 4000-5000 0 С.

Так ли это было всегда? Давайте заглянем вглубь истории Земли, которая начинается с газопылевого облака, из которого и сформировалась Солнечная система. Это облако было обширно, то есть имело размеры примерно, такие же, как настоящая Солнечная система. Все чужеродные космические тела, попадая в пределы этого облака, переставали существовать самостоятельно, и становились частью этого облака.

Облако, вращаясь, превращалось в довольно плоский диск с шаром-Солнцем в центре. Частицы облака, притягиваясь друг к другу, создавали уже некие крупные образования, которые увеличиваясь и всё более интенсивно притягивая свободные частицы, со временем превращались в планеты. (Более подробную информацию можно получить в материалах сайта

Первоначально Солнечная система состояла из Солнца и десяти планет. Это были: Меркурий, Венера, Земля, Марс, Церера, Фаэтон, Юпитер, Сатурн, Уран и Нептун. Не было Плутона, спутников планет, астероидов, метеоритов и комет.

Солнце в своём раннем возрасте было несколько больше, имело более высокую температуру поверхности и, следовательно, большую мощность излучения энергии. В нём, как и в других звёздах, стали протекать внутренние процессы, которые приводили к вспышкам, наподобие «новых звёзд». Происходили они примерно раз в 30 тыс. лет и сопровождались выбросом солнечного вещества, которое затем, давлением тепла и света Солнца, выталкивалось прочь, достигая самых удаленных планет. Это вещество состояло из элементов, преимущественно верхней части таблицы Менделеева. Вещество слой за слоем оседало на планеты, увеличивая их массу. Естественно, оно было однородным, хотя слои могли отличаться друг от друга в процентах какого-либо элемента. Да и вещество, из которого Земля состояла в стадии формирования, также было практически одинаковым в любом месте и на любой глубине, так как это было вещество газопылевого облака, которое тоже было ни чем иным, как произвольной смесью различных элементов и их соединений.

При увеличении массы Земли, а с нею и внутреннего давления, в её глубинах начали происходить процессы, видимо на атомном уровне (имеется в виду не химическое соединение элементов, а преобразование атома одного элемента в атом другого с выделением энергии), которые и привели к разогреву всей массы Земли. Температуры, особенно в глубинах, со временем стали столь велики, что расплавленное вещество уже имело возможность перемещаться, занимая место сообразно своему удельному весу - тяжёлое - ближе к центру, а лёгкое - к поверхности.

В науке существует уверенность, что разогрев Земли осуществили радиоактивные элементы, и в первую очередь - уран. Не отрицая полностью эту версию, хотелось бы высказать некоторые сомнения по этому поводу.

Урана, задействованного в разогреве Земли, конечно же, было бы недостаточно, чтобы, разогреть всю массу Земли, а затем поддерживать эту температуру в течение 4 млрд. лет, поэтому мы остаёмся при мнении, что здесь имеют место иные реакции, с перестройкой атомов одних элементов в атомы других. Эти реакции возможны при высоких давлениях и температурах. Высокая температура не только используется элементом для действия, но и даёт ему возможность самому произвести энергию. Предполагается, что в этой реакции произведённая энергия превышает потреблённую.

Разогрев, начавшийся в центральной части, постепенно стал вовлекать в этот процесс и вышележащие слои, что привело к разогреву всего тела планеты. Конечно, потери тепла внешнего слоя были более значительные, поэтому температура на поверхности была намного ниже, чем в глубинах, тем не менее, на верхнем слое этот процесс отразился более заметно. Нижележащие слои, нагреваясь расплавлялись и, расширяясь перемешивались. Верхний же слой-панцирь, нагреваясь и расширяясь во все стороны, коробился, разламываясь, образуя горы и трещины, в которые устремилось расплавленное вещество земных недр.

Теперь эти же процессы рассмотрим с некоторым применением хронологии.

3500 млн. лет назад Земля - это уже состоявшаяся планета, правда, ещё холодная, однако внутри неё уже начался процесс, который впоследствии приведёт её к разогреву. Этот период в геохронологии называется архей. В позднем архее наука уже фиксирует рудообразование, но мы сосредоточим своё внимание на следующим за археем периоде, который называется протерозой, что означает - более ранняя жизнь, и как увидим, в этот период никакой жизни просто не могло существовать.

Протерозой состоял из трёх периодов. Нижний - начался 2600 млн. лет назад, средний - 1900 млн. лет, и верхний - 1600 млн. лет назад. Верхний протерозой длился 1030 млн. лет. Общее время протерозоя, который продолжался примерно 2 млрд. лет, было временем ада на Земле. В многочисленных очагах рудообразования расплавленное вещество недр изливалось, покрывая обширные пространства в десятки и сотни километров. Это вещество текло подобно реке или образовывало озёра расплава, который благодаря высоким температурам поверхности Земли, остывал долговременно, успевая вступать в химические реакции с сероводородом атмосферы и с веществом окружающего его грунта. О температурах расплавленного вещества можно судить по тем металлам, которые находились в расплаве.

Если в рудах были хром или титан, то температура должна была быть не ниже 2000 0 С, а если вольфрам, то даже выше 3500 0 С.

Извержение расплавленного вещества из недр длилось какое-то время, после чего наступал период затишья. Видимо, в глубинах в результате реакций, продолжающихся постоянно, накапливалось производное вещество и при достижении какого-то критического объёма эти реакции переходили уже в иную фазу с большим выделением энергии, что и приводило к выплеску вещества глубин наружу.

В различных месторождениях руд, геология в настоящее время обычно обнаруживает несколько активных фаз рудообразования. Их подсчитывают. Оказывается, таких активных фаз рудообразования насчитывается до десяти и даже более.

Ещё в рудообразовании представляет интерес то, что фактически из одного и того же исходного материала получаются различные руды с многочисленными сопутствующими элементами, как металлами, так и неметаллами. Конечно, нельзя даже предполагать, чтобы какие-то элементы под воздействием неизвестных сил, стягивались бы к своему очагу рудообразования: кто к медному, кто к железному, а кто-то ещё к какому-то. Такого просто не могло быть. Однако иногда в очагах рудообразования присутствие металлов оценивается в десятки процентов. Не могли же они просто переместиться в это место.

Можно допустить, что на ассортимент рудного месторождения влияла температура и ещё какие-то сопутствующие условия, определявшие, какой элемент должен быть основным в каком-то конкретном случае, то есть что-то вроде специализации месторождения. Может быть, науке удастся это определить, а пока только констатация фактов.

Рудообразование состояло, по крайней мере, из двух стадий. На первой стадии «выпекался» тот или иной элемент в чистом виде и ряд сопутствующих элементов в меньшем количестве, а во второй стадии уже был возможен целый ряд превращений этого элемента от образования так называемых твёрдых растворов с другими элементами, до химических реакций, как в самом жерле, так и при выходе на поверхность. Раскалённая руда в большинстве случаев не окислялась, так как в атмосфере отсутствовал чистый кислород, зато обязательно вступала в соединения с сероводородом, в изобилии находящемся в атмосфере. Возможно, поэтому преобладающее большинство руд - это соединения с серой.

Я в своей книжке рассказов - «Солнце - это основа всего», многократно указываю на различные действия Природы, которые можно считать запланированными, то есть она как бы выполняет программу жизненного цикла (в данном случае на Земле). И образование руд - это очередное подтверждение этого. Науке известно, что в архее атмосфера Земли состояла на 60% из углекислого газа. Далее следовали сероводород и аммиак. Все остальные газы составляли не более 10%. Если гигантская растительность в каменноугольном периоде 350-285 млн. лет назад освободила воздух от углекислого газа, спрятав углерод, атмосферы в стволы деревьев, которые сейчас покоятся под солнечными выбросами, став углём, то освобождение атмосферы Земли от сероводорода произошло в протерозое, и это выполнили рудные месторождения.

Теперь надо сделать какие-то выводы и переходить к чему-то конкретному. Как и прежде, я буду обращаться к материалам своего сайта и блога. Начну с того, что бесспорно. Это - утверждение, что всё в Солнечной системе получено от Солнца.

Солнце взорвалось как сверхновая звезда, и, распылив всё своё вещество, образовало газопылевое облако, где среди прочих элементов присутствовал гелий и его изотоп - гелий-3. Естественно, образовавшаяся из этого вещества молодая Земля уже имела в своей массе какое-то количество изотопа гелия. Природой, видимо, это было запланировано на все времена, чтобы с чего-то начинать развитие планет. Зная это, уже можно более уверенно сказать, что разогрев тела Земли осуществлялся с использованием энергии гелия-3.

Что же такого особенного в этом изотопе гелия? Почему он, а не какой-нибудь другой элемент наделён такой энергией?

В действительности большими энергиями наделены все без исключения атомы, аккумулирующие эту энергию в атомном ядре, но дело в том, что обычно ядро атома очень прочно, и это является препятствием к доступности получения этой энергии. Однако есть несколько элементов, ядра которых не столь устойчивы. Это, во-первых - изотопы водорода - дейтерий и тритий, и изотоп гелия-4 - гелий-3. Почему они неустойчивы?

Тело находится в устойчивом состоянии, только тогда, когда оно имеет три точки опоры. (Смотри вышеуказанный сайт и блог). Это относится ко всему, что нас окружает, в том числе и к частицам ядра атома. Частицы дейтерия, трития и гелия-3 не имеют трёх точек опоры (соприкосновения) друг с другом, Следовательно, они находятся в неустойчивом состоянии. Это дало возможность, при использовании дейтерия и трития, создать водородную бомбу, а гелий-3 сулит решить для землян проблему больших энергий. Освоение гелия-3 - надежда человечества.

Но там, где большие энергии, присутствует и большой риск. А вдруг энергии будет слишком много и это обернётся повторением ада, наподобие того, что был в протерозое? Ведь диаметр Земли, благодаря солнечным выбросам, увеличился на километры. К нашей радости этого не будет. Ведь основное количество гелия-3 «выгорело» ещё в протерозое. Но наука обнаружила большие запасы гелия-3 на Луне. Оказалось - его там столько, что можно черпать прямо с поверхности бульдозерами и черпалками. Он находится в осевшем на Луну веществе солнечных выбросов, которое находится там в первозданном состоянии. На Земле же, гелия-3 чрезвычайно мало. А, казалось бы, должно было быть иначе. Ведь на Землю оседает то же самое вещество солнечных выбросов и в десятки раз больше, чем на Луну. В чём же причина?
Есть разные варианты ответа на этот вопрос.

Первозданную сохранность вещества солнечных выбросов на Луне можно объяснить тем, что на Луне отсутствует атмосфера. В условиях Земли, при наличии атмосферы, гелий-3, возможно, просто был выдавлен более тяжёлыми газами воздуха, и теперь он находится в самых верхних слоях атмосферы. Другое. Возможно, подвергаясь воздействию атмосферы и живой природы Земли,он реагировал на эти воздействия, расходуя свою потенциальную энергию? Ещё. Возможно, он способствовал преобразованию грунта в почву? А может быть, этот перечень причин этим не ограничивается и этому могло способствовать ещё что-то, чего мы не знаем? Но мы теперь знаем, какое огромное значение для Земли имел изотоп гелий-3.
Энергия гелия-3, поступившего из газопылевого облака при формировании Земли как планеты, разогрела тело Земли, создав ядро Земли, мантию и преобразовав поверхность Земли, то есть на Земле появились возвышенности, впадины и горы.

Сквозь разломы и трещины земной коры на поверхность изливались лавовые потоки, имеющие температуры расплавленного вещества в тысячи градусов, в которых происходили реакции разрушения атома и создания атомов практически всех элементов существующих ныне.

Огромное значение для появления жизни на Земле явилось то, что расплавленные руды, вступая в реакции с сероводородом атмосферы Земли, освободили атмосферу Земли от этого агрессивного соединения.

И, конечно же, все рудные месторождения Земли, появились только благодаря энергии гелия-3. Человек с благодарностью пользуется этими рудами и минералами.

Хочется порассуждать. А можно ли сейчас, создав условия протерозоя, то есть высокие температуры и давление, получать исскуственно созданные, нужные нам элементы? Ну, например, мечту алхимиков - золото?

Здесь, видимо, уместно ответить вопросом на вопрос: «А разве не получали древние потомки марсиан (смотри вышеуказанный сайт и блог) исскуственным путём золото?» Если бы оно в Египте или в других местах колонизации Земли добывалось так же, как добывают его современные старатели, то разве было бы оно для них по цене, как для нас сейчас медь? Откуда там столько золота? Читаем: «У фараона - золота, как песка», «Конкистадоры потребовали в качестве откупа - засыпать золотом всё помещение до окон».

Можно ли при современных знаниях осуществить мечту алхимиков? Если покумекать, то может что-то и придумаем. Ведь Природа одарила разумного человека полуфабрикатами (алюминий, кремний, магний и др.) и даже показала, как из них можно изготовить множество металлов и минералов. А золото может и само подскажет, как его «выпекать» из кремния или магния.

Ну что ж! Есть направление. Осталось только найти верный путь.


PS
Это обещанное сенсационное сообщение, которое, как и предыдущие, повидимому так же окажется недоступным для широких народных масс. Здесь в ЖЖ, оно находится надёжно спрятанным за семью печатями.

Наружный, прерывистый пояс земной коры образует почвы, под которыми залегают осадочные, магматические и метаморфические породы . Иногда они непосредственно выходят на поверхность земли. На той или иной глубине мы всегда обнаруживаем граниты и гнейсы , а под ними залегает пояс тяжелых базальтовых пород.

А знали ли вы, что из гранита даже производят кухонные столешницы? Кухни на заказ по индивидуальным размерам вы найдете по ссылке в этом абзаце.

По своему происхождению гранит и базальт связаны с магмой , которая, как мы узнаем дальше, порождает все разнообразие камня.

Что же представляет в таком случае магма?

В состав магмы, как полагают ученые, входят все известные нам химические элементы в различных соединениях.

Этот сложный расплав содержит огромное количество разнообразных паров и газов, играющих большую роль при образовании минералов.

На магму с огромной силой давят пласты горных пород. Когда же в их толще происходят перемещения и сдвиги, вызывающие землетрясения на поверхности земли, давление уменьшается, и магма начинает выдавливаться наружу по трещинам в земной коре.

В зависимости от химического состава магмы из нее образуются те или иные горные породы. Хорошо всем известные граниты являются продуктом кислых магм , богатых кремнеземом и щелочами, а базальты - продуктом основных магм , богатых железом и магнием. Кислые магмы отличаются большей подвижностью и меньшим удельным весом по сравнению с более вязкими и тяжелыми основными магмами.

Интересно отметить, что с кислыми магмами связаны месторождения оловянного камня , из которого, как нетрудно догадаться по названию минерала, добывается металлическое олово.

Цветные металлы - медь, цинк и свинец - и такие ценные редкие металлы, как вольфрам и молибден, получающие широкое применение в изготовлении сверхтвердых и специальных сталей, тоже связаны с кислыми магмами.

С основными магмами, в свою очередь, связаны месторождения железа (магнитный и хромистый железняк), сернистых соединений меди, никеля и кобальта, а также драгоценной платины.

В зависимости от условий остывания магмы как в ней самой, так и в окружающих породах возникают те или иные сообщества минералов.

Получается, что одни минералы становятся словно «спутниками» других минералов . Для поисковика это очень важный признак: свинцовый блеск, например, обычно встречается вместе с цинковой обманкой; оловянный камень - с минералами, содержащими вольфрам; сурьмяный блеск (антимонит) - с киноварью и плавиковым шпатом (флюорйтом); серебряные руды - со свинцовыми; жильное золото - с кварцем.

Отсюда можно сделать такой вывод: если геолог обнаружил в минеральной жиле, например, свинцовый блеск, то дальше он может найти здесь и другую ценную руду - цинковую обманку. Часто оба минерала образуют единое рудное тело - свинцово-цинковую руду.

Другим спутником цинковой обманки является минерал, содержащий медь, медный колчедан, и тогда оба эти минерала образуют ценную медно-цинковую руду.

Черные зерна магнитного железняка, которые обнаруживает золотоискатель при промывке песка, говорят ему о том, что в новых пробах, может быть, посчастливится увидеть на дне железного ковша не только тонкие блестящие золотинки и крупинки, но даже самородки драгоценного металла.

Общая характеристика полезных ископаемых

Прежде всего, полезными ископаемыми называются горные породы и минералы, которые используются в хозяйстве стран.

По своему физическому состоянию они могут быть:

  • твердые – уголь, соль, руда, мрамор и др.;
  • жидкие – нефть, минеральные воды;
  • газообразные – горючий газ, гелий, метан.

Когда за основу берут их использование, тогда выделяют:

  • горючие – уголь, нефть, торф;
  • рудные – руды горных пород, включающие металл;
  • нерудные – гравий, глина, песок и др.

Отдельную группу представляют драгоценные и поделочные камни.

Полезные ископаемые образовались разными способами и по происхождению бывают магматические, осадочные, метаморфические, размещение которых по земным недрам подчиняется определенным закономерностям.

Для складчатых областей обычно характерны магматические, т.е. рудные полезные ископаемые. Данное обстоятельство связано с тем, что они образуются из магмы и выделяющихся их неё горячих водных растворов.

Магма поднимается из земных недр по трещинам в земной коре и в них застывает на различной глубине.

Также рудные полезные ископаемые могут образоваться и из излившейся магмы-лавы, которая относительно быстро остывает. Магма внедряется, как правило, в период активных тектонических движений, поэтому рудные полезные ископаемые связаны со складчатыми областями планеты.

Руды могут образоваться и на платформенных равнинах, но, в этом случае они приурочены к нижнему ярусу платформы. На платформах рудные полезные ископаемые связаны со щитами, т.е. с выходами фундамента платформы на поверхность или в тех местах, где осадочный чехол не отличается мощностью, и фундамент близко подходит к поверхности.

Примером такого месторождения является Курская магнитная аномалия в России и Криворожский бассейн на Украине.

Замечание 1

Вообще руда представляет собой минеральный агрегат, из которого технологическим путем можно извлечь металл либо соединения металлов.

Руды металлов связаны с районами активного горообразования, но наличие гор ещё не означает наличия богатых месторождений. Третья часть Европы, например, занята горами, но, крупных рудных месторождений совсем немного.

Исходя из области применения, рудные полезные ископаемые делятся на группы – руды черных металлов, руды цветных металлов, руды благородных металлов и радиоактивные металлы.

Такое рудное полезное ископаемое, как железная руда является основой для производства черных металлов – чугуна, стали, проката. Крупнейшие запасы железных руд сосредоточены в США, Индии, Китае, Бразилии, Канаде.

Есть отдельные крупные месторождения в Казахстане, Франции, Швеции, Украине, Венесуэле, Перу, Чили, Австралии, Либерии, Малайзии, В странах Северной Африки.

В России крупные запасы железных руд, кроме КМА, есть на Урале, Кольском полуострове, в Карелии, В Сибири.

Руды черных металлов

Среди руд черных металлов наиболее востребованными и используемыми в промышленности являются железные руды.

Такие минералы, как гематит, магнетит, лимонит, сидерит, шамозит и тюрингит являются главными железосодержащими породами.

Добыча железной руды в мире превышает 1 млрд. тонн. Самым крупным производителем железной руды является Китай, добывающий 250 млн. тонн, в то время как Россия добывает 78 млн. тонн. По 60 млн. тонн добывают США и Индия, Украина – 45 млн. тонн.

Добыча железной руды в США ведется в районе озера Верхнее и в штате Мичиган.

В России крупнейшим железорудным бассейном является КМА, залежи которой оцениваются в 200-210 млрд. тонн или 50% планетарных запасов. Месторождение охватывает Курскую, Белгородскую, Орловскую области.

Для производства легированной стали и чугуна используется марганец в качестве легирующей добавки для придания им прочности и твердости.

Мировые промышленные запасы марганцевых руд сосредоточены на Украине – 42,2%. Есть марганцевые руды в Казахстане, ЮАР, Габоне, Австралии, Китае, в России.

Большое количество марганца производится также в Бразилии и Индии.

Для того чтобы сталь не ржавела, была жаропрочной и кислотоупорной необходим хром, один из основных компонентов руд черных металлов.

Специалисты предполагают, что из мировых запасов этой руды 15,3 млрд. тонн хромитовая руда высокого сорта приходится на ЮАР – 79%. В небольших количествах хром есть в Казахстане, Индии, Турции, довольно крупное месторождение этой руды находится в Армении. Небольшое месторождение разрабатывается в России на Урале.

Замечание 2

Самым редким из черных металлов является ванадий. Он используется для производства марочного чугуна и марочной стали. Ванадий очень важен для аэрокосмической промышленности, потому что его добавка обеспечивает высокие характеристики титановых сплавов.

При получении серной кислоты ванадий используется в качестве катализатора. В чистом виде его нет, и встречается ванадий в составе титаномагнетитовых руд, иногда встречается в фосфоритах, урансодержащих песчаниках и алевролитах. Правда, его концентрация не более 2%.

Иногда даже значительные количества ванадия могут быть в бокситах, бурых углях, битуминозных сланцах и песках. При извлечении главных компонентов из минерального сырья, ванадий получают как побочный продукт.

По учтенным запасам этой руды лидерами являются ЮАР, Австралия и Россия, а основные его производители ЮАР, США, Россия, Финляндия.

Руды цветных металлов

Цветные металлы представлены двумя группами:

  1. легкие, к ним относятся алюминий, магний, титан;
  2. тяжелые – это медь, цинк, свинец, никель, кобальт.

Из всех цветных металлов алюминий является самым распространенным в земной коре.

Среди его физических свойств такие, как малая плотность, высокая теплопроводность, пластичность, электрическая проводимость, коррозионная стойкость. Этот металл хорошо поддается ковке, штамповке, прокатке, волочению. Его легко можно сварить.

Исходное сырье для металлического алюминия – глинозем, который получают при переработке бокситов и нефелиновых руд.

Запасы бокситов есть в Гвинее, Бразилии, Австралии, а Россия занимает по ним 9-е место.

Российские запасы бокситов сосредоточены в Белгородской и в Свердловской области, а также в Республике Коми. Российские бокситы невысокого качества. Нефелиновые руды залегают на Кольском полуострове. По производству глинозема Россия занимает 6-е место в мире. Весь глинозем производится из отечественного сырья.

Титан, открыли в 1791 г. Его отличительные характеристики – это высокая прочность и коррозионная стойкость. Для промышленности основным типом титановых руд являются прибрежно-морские россыпи. Такие крупные россыпи известны в России, Австралии, Индии, Бразилии, Новой Зеландии, Малайзии, Шри-Ланке.

Россыпные месторождения титана являются комплексными и содержат цирконий.

К легким цветным металлам относится магний, который в промышленности применяется сравнительно недавно. В военные годы основная его часть шла для производства зажигательных снарядов, бомб, осветительных ракет.

Сырье для получения магния приурочено ко многим районам планеты. Магний содержится в доломите, карналлите, бишофите, каините и других породах, имеющих широкое распространение в природе.

На долю США приходится около 41% мирового производства металлического магния и 12% его соединений.

Кроме США крупными производителями металлического магния являются Турция и КНДР. Производителями соединений магния – Россия, Китай, КНДР, Австрия, Греция, Турция.

Среди тяжелых цветных металлов выделяется медь, которая представляет собой пластичный элемент золотисто-розового оттенка, на открытом воздухе покрывающийся кислородной пленкой.

Отличительной особенностью меди являются её высокие антибактериальные свойства. В сплавах с никелем, оловом, золотом, цинком она используется в промышленности.

После Чили и США, по запасам меди Россия стоит на третьем месте в мире.

Кроме самородной меди, сырьем для её получения является халькопирит и борнит. Распространяются месторождения меди в США – Скалистые горы, В Канадском щите и провинции Квебек, Онтарио в Канаде, в Чили и Перу, в медном поясе Замбии, ДРК, в России, Казахстане, Узбекистане, Армении.

Основными и крупными производителями этого металла являются Чили и США, а также Канада, Индонезия, Перу, Австралия, Польша, Замбия, Россия.

Цинк впервые получили из каламина, по существу это карбонат цинка ZnCO2. Сегодня получают цинк из сульфидных руд, наиболее важной из которых является цинковая обманка и марматит.

Добыча цинковых руд идет в Канаде, США, в России, Австралии, Мексике, в центральной Африке, Казахстане, Японии и других странах.

Крупные производители цинковой руды – Япония и США они же её крупные импортеры.

Известный с древности никель при добавке к стали повышает её вязкость, упругость, антикоррозионные свойства.

Впервые металлический кобальт был получен в 1735 г. Сегодня он используется для производства сверхтвердых сплавов.

Сырьем для свинца является его главный рудный минерал галенит. Свинцовые руды добываются во многих странах, а ведущие его производители Австралия, Китай, Перу, Канада.

Добыча свинца ведется в Казахстане, России, Мексике, Швеции, ЮАР, Марокко. Крупные месторождения свинца есть в Узбекистане, Таджикистане, Азербайджане.

В России свинцовые месторождения сосредоточены на Алтае, в Забайкалье, Якутии, Приморье, Северном Кавказе.


© 2024, brkm.ru - Наука и техника. Технологии. Строительство. Интересное