Волоконные лазеры: мощные одномодовые волоконные лазеры. Маломощные волоконные лазеры Оптоволоконный лазерный источник

Под волоконными лазерами понимают твердотельные лазеры с оптической накачкой, активным элементом в которых является волоконный световод с добавками лазерных активаторов. Наиболее перспективными для световодных систем являются лазеры на волокнах, активированных ионами неодима Ионы неодима имеют две основные лазерные линии с центральными длинами волн мкм и мкм, лежащими в спектральном диапазоне, где потери и дисперсия света в кварцевых волокнах минимальны.

Рис. 4.11. Зависимость длины ретрансляционного участка от скорости передачи информации для ступенчатого световода с затуханием для мкм:

1 - для лазерного диода (спад характеристики на участке ВС обусловлен межмодовой дисперсией) 2 - для сбетоизлучающего диода (спад характеристики обусловлен на участке широким спектром диода, на участке - дополнительно спадом частотной характеристики)

Спектральные характеристики усиления неодима практически не зависят от внешних условий, темпер атурный дрейф длины волны, соответствующей максимуму усилений ионов неодима, равен тогда как для полупроводниковых сред этот параметр составляет Волоконная конструкция излучателя позволяет с помощью стандартных разъемов эффективно вводить излучение в волоконные световоды, в том числе и одномодовые.

Несмотря на эти достоинства и, как будет показано ниже, широкие функциональные возможности, волоконные лазеры до сих пор не вышли из стадии исследований. Объясняется это тем, что при создании волоконно-оптических систем многие задачи решались с использованием хорошо разработанных полупроводниковых излучателей, особенно во внедряемых в первую очередь достаточно простых системах, где определяющую роль играет одно из основных преимуществ полупроводниковых источников - возможность прямой модуляции интенсивности излучения током накачки. В твердотельных лазерах, в частности в лазерах на средах, активированных неодимом, скоростная модуляция интенсивности излучения изменением мощности накачки принципиально невозможна в силу сравнительно большого времени продольной релаксации. Невозможность быстрого «включения» инверсной населенности ограничивает частоты прямой модуляции значениями Гц. Развитие световодных систем, особенно перспективных систем ближайшего будущего с когерентным приемом и многоканальным спектральным

уплотнением стимулирует разработки волоконных лазеров, которые могут использоваться не только как генераторы, но и как усилители света.

Существующие конструкции волоконных лазеров можно разделить на три группы. В волоконных лазерах первой группы используются жгуты из нескольких волокон большой длины и мощная накачка импульсными газоразрядными лампами . Положительная обратная связь в таких конструкциях образуется за счет отражения света от торцов волокон и обратного рассеяния на микроизгибах и неоднородностях.

Рис. 4.12. Конструкции волоконных лазеров а - с торцовой накачкой; б - с поперечной накачкой дляволокон малого диаметра, в-с непосредственной укладкой волокон на линейку - излучающая площадка - зеркало резонатора лазера, прозрачное для излучения , 13 - активное волокно, 5 - зеркало резонатора; 6 - оптический клей, 8 - отражатель, 9 - стеклянный цилиидр, 10, 12 - радиаторы; 11, 14 - линейки СИД

Ламповая накачка позволяет реализовать высокие коэффициенты усиления за один проход, однако требует применения систем жидкостного принудительного охлаждения и громоздких блоков питания, что, по-видимому, делает малореальным создание малогабаритных устройств. Определенные перспективы в этом смысле могут заключаться в применении газоразрядных микроламп . К достоинствам конструкций с ламповой накачкой следует отнести возможность использования их в качестве оптических усилителей бегущей волны и регенеративных усилителей с достаточно высоким (~30-40 дБ) усилением.

В конструкциях волоконных лазеров второй группы используются короткие отрезки монокристаллических и стеклянных волокон, активированных ионами неодима. Накачка производится через торец волокна полупроводниковым лазером или СИД. Достаточно высокая эффективность накачки достигается в результате согласования спектра излучения полупроводникового излучателя на ДГС GaAlAs с одной из интенсивных линий поглощения неодима с центральной длиной волны около

0,81 мкм. Схематически конструкция волоконных лазеров второй группы изображена на рис. 4.12, а. Вследствие малого коэффициента усиления активной среды резонатор лазера образуется

диэлектрическими зеркалами с высоким коэффициентом отражения. Такую конструкцию имеют лазеры на монокристаллическом волокне из алюмоиттриевого граната с неодимом стеклянных кварцевых волокнах с неодимом . Имеются сообщения о генерации с торцовой накачкой криптоновым лазером в кристаллическом волокне и с накачкой аргоновым лазером в волокне из рубина Лучшие результаты были получены при использовании кристалла имеющего волоконную геометрию, длиной 0,5 см и диаметром 80 мкм. Внешний резонатор (рис. 4.12, а) был образован зеркалами с диэлектрическим покрытием, одно из которых имело коэффициент отражения для лазерного излучения с мкм и всего лишь для излучения накачки, второе зеркало с таким же высоким коэффициентом отражения для лазерного излучения достаточно хорошо отражало свет накачки Зеркала были расположены практически вплотную к торцам волокна. Накачка осуществлялась поверхностным СИД на с диаметром излучающей площадки 85 мкм. Пороговая мощность накачки составляла

Основные достоинства волоконных лазеров такой конструкции - малые потребляемая мощность и габаритные размеры. Основные недостатки: торцовая схема накачки не позволяет использовать отрезки волокна с длиной более 1 см, что ограничивает выходную мощность. Кроме того, технология изготовления и юстировки этих лазеров сложна, а наличие СИД накачки у одного из торцов усложняет использование лазера в качестве усилителя оптических сигналов.

Многовитковые волоконные лазеры с поперечной накачкой линейками СИД (рис. представляют конструкции третьей группы . На линейку СИД укладывается несколько витков стеклянного волокна, сердцевина которого активирована ионами неодима. Конструкция в определенной мере сочетает достоинства волоконных лазеров первой и второй групп и лишена большей части их недостатков. Применение в качестве источников накачки полупроводниковых излучателей делает такие системы достаточно малогабаритными, использование поперечной схемы накачки и длинных отрезков волокна позволяет получить достаточно большое усиление за один проход. Ввиду малого диаметра волоконных световодов в схеме с поперечной накачкой эффективным является использование волокон из стекол с высокой концентрацией ионов неодима и соответственно с большим коэффициентом поглощения света накачки. Такими свойствами обладают волокна, выполненные из ультрафосфатов неодима . Многовитковая укладка волокна на линейки светодиодов может быть выполнена разными способами . Так, отрезок волокна многократно протягивается сквозь стеклянный цилиндр диаметром около 1 мм (рис. 4.12, б), на наружную поверхность которого нанесено отражающее покрытие для

увеличения эффективности использования излучения накачки. Этот способ предпочтителен для волокон с малым внешним диаметром ( мкм). Волокна большего диаметра могут быть уложены на линейку СИД виток к витку (рис. 4.12, в). Обе конструкции могут использоваться как оптические усилители бегущей волны, при этом один из концов световода является входом усилителя, второй - выходом. Нанесение зеркальных покрытий на торцы волокон позволяет осуществлять лазерную генерацию с волоконным резонатором Фабри - Перо.

Особенности лазерных процессов в активных волоконных световодах определяются наличием специфической лазерной генерации в отсутствие положительной обратной связи.

Рис. 4.13. Волоконный световод: а - с активной сердцевиной и пассивной обо» лочкой; б - с пассивной сердцевиной и активной оболочкой (2)

В этом состоит основное отличие волоконных лазеров от лазеров на объемных активных элементах. Чтобы пояснить сущность этого процесса, близкого к режиму суперлюминесценции в полупроводниковых СИД, рассмотрим некоторый элементарный участок световода, в котором создана инверсная населенность (рис. 4.13, а). Спонтанное излучение происходит равновероятно во всех направлениях, однако излучение, сосредоточенное в двух конусах углов, имеющих общую с волокном ось и определяемых углом раскрыва 20, не выходит из сердцевины. Здесь

где - соответственно показатели преломления сердцевины и оболочки Это излучение возбуждает собственные колебания (моды) световода, которые усиливаются посредством стимулированного излучения в процессе распространения по волокну вправо и влево (рис. 4.13, а). Та же картина наблюдается для любого другого элементарного участка активной сердцевины световода. На выходе такого волоконного источника света расходимость излучения приближенно определяется числовой апертурой волокна

До тех пор пока интенсивность световых волн, распространяющихся навстречу друг другу в активном световоде, значительно меньше величины, насыщающей усиление, встречные волны независимы, равно как независимы и энергии, переносимые различными модами световода. В этих условиях процесс усиления спонтанного излучения за счет вынужденного описывается хорошо известными уравнениями лазерного усилителя без насыщения и с учетом спонтанного излучения. Спектральная плотность мощности излучения в одной моде на выходе активного участка световода длиной (рис. 4.13, а) равна

Здесь - постоянная Планка; - частота световых колебаний; - населенности верхнего и нижнего лазерных уровней; - коэффициента усиления на единицу длины, где - коэффициент Эйнштейна для вынужденного перехода; - нормированная форма спектральной линии усиления; с - скорость света. Максимальная генерируемая мощность может ограничиваться либо длиной световода либо, как и в лазерах с резонаторами, насыщением. Естественно, что в процессе усиления происходит сужение спектра генерации по сравнению со спектром люминесценции за счет того, что спектральные компоненты в центре линии усиливаются больше. Ширина спектра определяется усилением и формой причем спектр излучения из-за отсутствия резонатора является сплошным.

Рассматриваемый специфический световодный лазерный процесс имеет три существенных аспекта .

1. Активный волоконный световод может использоваться как источник света без оптического резонатора.

2. При создании волоконных лазеров по традиционной схеме с резонатором необходимо учитывать, что рассмотренный процесс может привести к насыщению усиления за один проход, в результате чего обратная связь потеряет смысл. В этом случае значения и необходимо выбирать так, чтобы была далека от значения, насыщающего усиление.

3. В волоконных оптических усилителях генерация света в результате рассмотренного процесса является основным источником шума. Спектральная плотность мощности шума в одной моде, пересчитанная на вход усилителя, как следует из формулы (4.12), равна

В четырехуровневой системе, каковой является схема лазерных уровней неодима, обычно и при больших усилениях

В объемных усилителях шум усиленного спонтанного излучения издавна считается принципиально неустранимым (см., например, работу ), однако в волоконных усилителях возможно значительное снижение его уровня при использовании световода, изображенного на рис. 4.13, 6. Одномодовое волокно, сердцевина которого изготовлена из кварцевого стекла с добавкой, повышающей показатель преломления, например имеет оболочку из стекла, активированного ионами неодима. Создание инверсной населенисстн в оболочке приводит к усилению моды сердцевины с эффективным коэффициентом усиления

где - коэффициент усиления в оболочке; - часть мощности моды сердцевины, которая распространяется в оболочке; Р - общая мощность, переносимая этой модой. Соотношение меняется от 0,99 до 0,1 при изменении параметра волокна от 0,6 до 2,4048 . При сердцевина начинает эффективно направлять основную моду путем локализации ее поля вблизи себя, возбуждается вторая мода. Формула получена тем же способом, что и выражение для коэффициента затухания волокна с оболочкой, в которой происходят потери излучения уступают по своим качествам волоконным. Существенными недостатками первых являются температурная нестабильность линии усиления ( для мкм), значительные потери при стыковке одномодовых волоконных световодов с планарным световодом усилителя и высокий уровень мощности шума - излучения суперлюминесценцни.

Волоконные лазеры открывают возможности для создания новых типов ВОД. Чувствительный элемент, которым является волоконный световод, представляет собой здесь часть волоконного кольцевого или линейного резонатора лазера.

Рис. 4.14. Одночастотные волоконные лазеры с распределенной обратной связью (а) и брэгговскими зеркалами (б): 1 - активная сердцевина; 2 - оболочка с периодической структурой

Изменение фазы световых колебаний под действием внешних факторов приводит в лазерах к изменению частот генерации различных мод. Информация о внешних воздействиях содержится в изменении частоты межмодовых биений. На основе волоконного лазера с кольцевым резонатором, который реализуется сваркой концов световода или разъемным их соединением, достаточно просто создать малогабаритный лазерный волоконный гироскоп.

Стабильные одночастотные волоконные лазеры могут быть выполнены в виде конструкции с распределенной обратной связью или с распределенным брэгговским отражением. Для этого на определенных участках волокна одним из способов, которые будут описаны ниже (см. п. 4.8), создается волоконный отражающий спектральный фильтр (рис. 4.14). Такие источники могут использоваться в фазовых ВОД.

Использование суперлюминесцентных волоконных лазеров позволяет упростить конструкцию пассивных волоконных гироскопов и повысить их чувствительность за счет снижения уровня шумов, вызванных наличием объемных элементов. В кольцевых интерферометрах гироскопах уровень шумов снижается при уменьшении длины когерентности излучения источника и числа объемных элементов (см. п. 3.6). В волоконном источнике легко добиться, чтобы длина когерентности излучения была больше, чем разность хода встречных волн интерферометра, обусловленная вращением и невзаимными эффектами. Суперлюминесцентные волоконные лазеры имеют ширину спектра нм и достаточно высокую импульсную мощность Такой источник

соединяется с волоконным кольцевым интерферометром с помощью стандартных, ответвителей.


ТОМАС ШРИБЕР, АНДРЕАС ТЮННЕРМАН и АНДРЕАС ТОМС

Благодаря идентификации проблем мощных волоконных лазеров и оптимизации оптического волокна, была достигнута одномодовая мощность 4,3 кВт с будущим возможным масштабированием и новыми сверхбыстрыми лазерными приложениями в разработке.

Если есть одна очевидная тенденция в лазерной технологии, то это рост волоконных лазеров. Волоконные лазеры взяли на себя долю рынка от мощных CO2-лазеров, а также от объемных твердотельных лазеров при мощной резке и сварке. Крупные производители волоконных лазеров в настоящее время обращаются к ряду новых приложений, чтобы завоевать еще больше рынков.

Среди мощных лазеров одномодовые системы предлагают функции, которые делают их желательными: они обладают самой высокой яркостью, и их можно сфокусировать до нескольких микрон и до самых высоких интенсивностей. Они также демонстрируют наибольшую глубину фокуса, что делает их наиболее подходящими для дистанционной обработки.

Тем не менее, их сложно изготовить, и только лидирующая на рынке лидирующая компания PHG Photonics (Oxford, MA) предлагает систему мощностью 10 кВт с одномодовым излучением (2009).

К сожалению, нет данных на эти характеристики луча, в частности, о любых возможных многомодовых компонентах, которые могут соответствовать одномодовому лучу.

Команда исследователей в Германии продемонстрировала одномодовую мощность 4,3 кВт от волоконного лазера, в которой выход был ограничен только мощностью входной накачки.

Финансируется правительством Германии и в сотрудничестве с TRUMPF (Ditzingen, Germany), Active Fiber Systems, Jenoptik и Лейбницским институтом фотонных технологий, группой ученых из Университета Фридриха Шиллера и Института прикладной оптики и точной инженерии Фраунгофера (все В Йене, Германия) проанализировали проблемы для масштабирования таких лазеров, а затем разработали новые волокна для преодоления ограничений. Команда успешно завершила серию испытаний, показывающих одномодовый выход 4,3 кВт, в которых выход волоконного лазера ограничивался только мощностью входной накачки.

Эффекты сдерживания для одномодового волоконного лазерного масштабирования

Каковы проблемы для такого одномодового мощного волоконного лазера? Они могут быть сгруппированы в три поля: a) улучшенная накачка, b) разработка активного волокна с низкими оптическими потерями, работающими только в одномодовом режиме, и c) правильное измерение результирующего излучения.

В этой статье мы будем предполагать, что а) решается с помощью высокоярких лазерных диодов и соответствующих методов развязки, и сосредоточимся на двух других областях.

В рамках разработки активного волокна для высокомощного одномодового режима для оптимизации используются два общих набора параметров: легирование и геометрия. Все параметры должны быть определены для минимальных потерь, одномодового режима и, наконец, мощного усиления. Идеальный волоконный усилитель обеспечит высокую скорость преобразования более 90%, отличное качество луча и выходную мощность, ограниченную только доступной мощностью накачки.

Однако повышение масштаба одномодовой системы до более высоких мощностей может привести к большей плотности мощности внутри активной активной зоны, увеличению тепловой нагрузки и ряду нелинейных оптических эффектов, таких как вынужденное комбинационное рассеяние (ВКР) и вынужденное рассеяние Бриллюэна (SBS) ,

В зависимости от размера активной сердцевины можно возбуждать и усиливать несколько поперечных мод. Для заданного шага индекса между ядром и оболочкой, чем меньше активное сечение активной ячейки, тем меньше число таких режимов. Однако меньший диаметр также означает более высокую плотность мощности. Несколько трюков, таких как сгибание волокна, добавляют потери для более высоких режимов.

Тем не менее, для больших диаметров сердечника и при тепловой нагрузке могут возникать другие режимы. Эти режимы подвержены взаимодействию во время усиления — без оптимальных условий распространения, выходной профиль может стать пространственно или временно неустойчивым.

Нестабильности поперечных мод

Иттербий (Yb) -допированные волокна являются типичной рабочей средой для мощных одномодовых волоконных лазеров. Но за пределами определенного порога они показывают совершенно новый эффект — так называемые неустойчивости поперечной моды (TMI).

При определенном уровне мощности внезапно появляются более высокие режимы или даже моды оболочки, энергия динамически передается между этими режимами, а качество луча уменьшается.

Пучок начинает колебаться на выходе.

Поскольку TMI была обнаружена, она наблюдалась в различных конструкциях волокон от волокон с шаговым индексом до волокон фотонного кристалла. Только его пороговое значение зависит от геометрии и легирования, но грубая оценка говорит о том, что этот эффект превышает выходную мощность 1 кВт.

Тем временем было обнаружено, что эффект связан с тепловыми эффектами внутри волокна с сильным отношением к эффектам фотопотемнения. Более того, восприимчивость волоконных лазеров к TMI, по-видимому, зависит от состава ядра.

Геометрия шагового индекса приводит к ряду параметров для оптимизации. Диаметр сердечника, размер облицовки насоса и индекс разности преломления между сердечником и оболочкой насоса могут быть настроены. Эта настройка зависит от концентрации легирующей примеси, т. е. концентрация ионов Yb может быть использована для управления длиной поглощения излучения накачки в активном волокне. Другие добавки могут быть добавлены для снижения тепловых эффектов и управления этапом показателя преломления.

Но есть некоторые противоположные требования. Чтобы уменьшить нелинейные эффекты, волокно должно быть короче. Однако для снижения тепловой нагрузки волокно должно быть длиннее. Фото-потемнение растет с квадратом концентрации легирующей примеси, поэтому более длинные волокна с более низким допингом также будут лучше.

Приложения в ультрабыстрой науке

После примерно десятилетия стагнации в области масштабирования мощных одномодовых волоконных лазеров теперь представляется целесообразным разработать новое поколение волоконных лазеров с киловаттным классом с отличным качеством луча.

Показаны выходные мощности 4,3 кВт, ограниченные только мощностью накачки.

Определены основные ограничения для дальнейшего масштабирования, и были определены пути преодоления этих ограничений.

Следует отметить, что это было тщательное исследование всех известных эффектов и последующая оптимизация параметров, которые привели к успехам в дизайне волокон и, наконец, к новым рекордам в выходной мощности.

Дальнейшее масштабирование и адаптация волокна для других приложений кажутся выполнимыми и будут нацелены дальше.

Это открывает ряд интересных перспектив.

С одной стороны, передача результатов в промышленные продукты желательна партнерами по проекту, но потребует дополнительных крупных усилий в области развития.

С другой стороны, эта технология очень важна для масштабирования других волоконно-оптических лазерных систем, таких как фемтосекундные волоконные усилители.

REFERENCES

  1. F. Beier et al., «Single-mode 4.3 kW output power from a directly diode-pumped Yb-doped fiber amplifier,» to be published in Opt. Express.
  2. T. Eidam et al., Opt. Lett., 35, 94–96 (2010).
  3. M. Müller et al., Opt. Lett., 41, 3439–3442 (2016).

Волоконные лазеры компактны и прочны, точно наводятся и легко рассеивают тепловую энергию. Они бывают разных видов и, имея много общего с оптическими квантовыми генераторами других типов, обладают собственными уникальными преимуществами.

Волоконные лазеры: принцип работы

Устройства этого типа представляют собой вариацию стандартного твердотельного источника когерентного излучения с рабочим телом из оптоволокна, а не стержня, пластины или диска. Свет генерируется легирующей примесью в центральной части волокна. Основная структура может варьироваться от простой до довольно сложной. Устройство иттербиевого волоконного лазера таково, что волокно имеет большое отношение поверхности к объему, поэтому тепло может быть относительно легко рассеяно.

Волоконные лазеры накачиваются оптически, чаще всего с помощью диодных квантовых генераторов, но в некоторых случаях - такими же источниками. Оптика, используемая в этих системах, как правило, представляет собой волоконные компоненты, причем большинство или все они соединены друг с другом. В некоторых случаях используется объемная оптика, а иногда внутренняя оптоволоконная система сочетается с внешней объемной оптикой.

Источником диодной накачки может служить диод, матрица, или множество отдельных диодов, каждый из которых связан с соединителем волоконно-оптическим световодом. Легированное волокно на каждом конце имеет зеркало объемного резонатора - на практике в волокне делают решетки Брэгга. На концах объемной оптики нет, если только выходной луч не переходит в нечто иное, чем волокно. Световод может скручиваться, так что при желании лазерный резонатор может иметь длину в несколько метров.

Двухъядерная структура

Структура волокна, используемого в волоконных лазерах, имеет важное значение. Наиболее распространенной геометрией является двухъядерная структура. Нелегированное внешнее ядро ​​(иногда называемое внутренней оболочкой) собирает накачиваемый свет и направляет его вдоль волокна. Вынужденное излучение, генерируемое в волокне, проходит через внутреннее ядро, которое часто является одномодовым. Внутреннее ядро ​​содержит присадку иттербия, стимулируемую световым пучком накачки. Существует множество некруговых форм внешнего ядра, в числе которых - гексагональная, D-образная и прямоугольная, уменьшающих вероятность непопадания светового пучка в центральное ядро.

Волоконный лазер может иметь торцевую или боковую накачку. В первом случае свет от одного или нескольких источников поступает в торец волокна. При боковой накачке свет подается в разветвитель, который подает его во внешнее ядро. Это отличается от стержневого лазера, где свет поступает перпендикулярно к оси.

Для такого решения требуется много конструктивных разработок. Значительное внимание уделяется подведению света накачки в активную зону, чтобы произвести инверсию заселенности, ведущую к вынужденному излучению во внутреннем ядре. Сердцевина лазера может иметь различную степень усиления в зависимости от легирования волокна, а также от его длины. Эти факторы настраиваются инженером-конструктором для получения необходимых параметров.

Могут возникнуть ограничения мощности, в частности, при работе в пределах одномодового волокна. Такой сердечник имеет очень малую площадь поперечного сечения, и в результате через него проходит свет очень высокой интенсивности. При этом становится все более ощутимым нелинейное рассеяние Бриллюэна, которое ограничивает выходную мощность несколькими тысячами ватт. Если выходной сигнал является достаточно высоким, торец волокна может быть поврежден.

Особенности волоконных лазеров

Использование волокна в качестве рабочей среды дает большую длину взаимодействия, которая хорошо работает при диодной накачке. Эта геометрия приводит к высокой эффективности преобразования фотонов, а также надежной и компактной конструкции, в которой отсутствует дискретная оптика, требующая настройки или выравнивания.

Волоконный лазер, устройство которого позволяет ему хорошо адаптироваться, может быть приспособлен как для сварки толстых листов металла, так и для получения фемтосекундных импульсов. Световолоконные усилители обеспечивают однопроходное усиление и используются в сфере телекоммуникаций, поскольку способны усиливать многие длины волн одновременно. Такое же усиление применяется в усилителях мощности с задающим генератором. В некоторых случаях усилитель может работать с лазером непрерывного излучения.

Другим примером являются источники спонтанного излучения с волоконным усилением, в которых вынужденное излучение подавляется. Еще одним примером может служить рамановский волоконный лазер с усилением комбинированного рассеивания, существенно сдвигающим длину волны. Он нашел применение в научных исследованиях, где для комбинационной генерации и усиления используется фторидное стекловолокно, а не стандартные кварцевые волокна.

Тем не менее, как правило, волокна изготавливают из с редкоземельной легирующей примесью в ядре. Основными добавками являются иттербий и эрбий. Иттербий имеет длины волн от 1030 до 1080 нм и может излучать в более широком диапазоне. Использование 940-нм диодной накачки значительно сокращает дефицит фотонов. Иттербий не обладает ни одним из эффектов самогашения, которые есть у неодима при высоких плотностях, поэтому последний используется в объемных лазерах, а иттербий - в волоконных (они оба обеспечивают примерно одинаковую длину волны).

Эрбий излучает в диапазоне 1530-1620 нм, безопасном для глаз. Частоту можно удвоить для генерации света при 780 нм, что недоступно для волоконных лазеров других типов. Наконец, иттербий можно добавить к эрбию таким образом, что элемент будет поглощать излучение накачки и передавать эту энергию эрбию. Тулий - еще одна легирующая присадка со свечением в ближней инфракрасной области, которая, таким образом, является безопасным для глаз материалом.

Высокая эффективность

Волоконный лазер представляет собой квази-трехуровневую систему. Фотон накачки возбуждает переход от основного состояния на верхний уровень. Лазерный переход является переходом с самой нижней части верхнего уровня в одно из расщепленных основных состояний. Это очень эффективно: например, иттербий с 940-нм фотоном накачки излучает фотон с длиной волны 1030 нм и квантовым дефектом (потерей энергии) всего около 9 %.

В противоположность этому неодим, накачиваемый при 808 нм, теряет около 24 % энергии. Таким образом, иттербий по своей природе обладает более высокой эффективностью, хотя и не вся она достижима из-за потери некоторых фотонов. Yb может быть накачан в ряде полос частот, а эрбий - длиной волны 1480 или 980 нм. Более высокая частота не так эффективна, с точки зрения дефекта фотонов, но полезна даже в этом случае, потому что при 980 нм доступны лучшие источники.

В целом эффективность волоконного лазера является результатом двухступенчатого процесса. Во-первых, это КПД диода накачки. Полупроводниковые источники когерентного излучения очень эффективны, с 50 % КПД преобразования электрического сигнала в оптический. Результаты лабораторных исследований говорят о том, что можно достичь значения в 70 % и больше. При точном соответствии выходного излучения линии поглощения волоконного лазера и достигается высокий КПД накачки.

Во-вторых, это оптико-оптическая эффективность преобразования. При небольшом дефекте фотонов можно достичь высокой степени возбуждения и эффективности экстракции с оптико-оптической эффективностью преобразования в 60-70 %. Результирующий КПД находится в диапазоне 25-35 %.

Различные конфигурации

Оптоволоконные квантовые генераторы непрерывного излучения могут быть одно- или многомодовыми (для поперечных мод). Одномодовые производят высококачественный пучок для материалов, работающих или посылающих луч через атмосферу, а многомодовые промышленные волоконные лазеры могут генерировать большую мощность. Это используется для резки и сварки, и, в частности, для термообработки, где освещается большая площадь.

Длинноимпульсный волоконный лазер является, по существу, квазинепрерывным устройством, как правило, производящим импульсы миллисекундного типа. Обычно его рабочий цикл составляет 10 %. Это приводит к более высокой пиковой мощности, чем в непрерывном режиме (как правило, в десять раз больше), что используется, например, для импульсного сверления. Частота может достигать 500 Гц, в зависимости от длительности.

Модуляция добротности в волоконных лазерах действует также, как и в объемных. Типичная длительность импульса находится в диапазоне от наносекунды до микросекунды. Чем длиннее волокно, тем больше времени требуется для Q-переключения выходного излучения, что ведет к более продолжительному импульсу.

Свойства волокна накладывают некоторые ограничения на модуляцию добротности. Нелинейность волоконного лазера более значительна из-за малой площади поперечного сечения сердечника, так что пиковая мощность должна быть несколько ограничена. Можно использовать либо объемные переключатели добротности, которые дают более высокую производительность, или волоконные модуляторы, которые подсоединяются к концам активной части.

Импульсы с модуляцией добротности могут быть усилены в волокне или в объемном резонаторе. Пример последнего можно найти в Национальном комплексе имитации ядерных испытаний (NIF, Ливермор, Калифорния), где иттербиевый волоконный лазер является задающим генератором для 192 пучков. Малые импульсы в больших плитах из легированного стекла усиливаются до мегаджоулей.

У волоконных лазеров с синхронизацией частота повторения зависит от длины усиливающего материала, как и в других схемах синхронизации мод, а длительность импульса зависит от пропускной способности усиления. Самые короткие находятся в пределах 50 фс, а наиболее типичные - в диапазоне 100 фс.

Между эрбиевыми и иттербиевыми волокнами существует важное различие, в результате чего они работают в различных режимах дисперсии. Легированные эрбием волокна излучают при 1550 нм в области аномальной дисперсии. Это позволяет производить солитоны. Иттербиевые волокна находятся в области положительной или нормальной дисперсии; в результате они порождают импульсы с выраженной линейной частотой модуляции. В результате для сжатия длины импульса может понадобится брэгговская решетка.

Есть несколько способов изменения волоконно-лазерных импульсов, в частности, для сверхбыстрых пикосекундных исследований. Фотонно-кристаллические волокна могут быть изготовлены с очень малыми ядрами для получения сильных нелинейных эффектов, например, для генерации суперконтинуума. В противоположность этому фотонные кристаллы также могут быть изготовлены с очень большими одномодовыми сердечниками для избежания нелинейных эффектов при больших мощностях.

Гибкие фотонно-кристаллические волокна с большим сердечником создаются для применений, требующих высокой мощности. Одним из приемов состоит в намеренном изгибе такого волокна для устранения любых нежелательных мод высшего порядка с сохранением лишь основной поперечной моды. Нелинейность создает гармоники; с помощью вычитания и складывания частот можно создавать более короткие и более длинные волны. Нелинейные эффекты могут также производить сжатие импульсов, что приводит к появлению частотных гребенок.

В качестве источника суперконтинуума очень короткие импульсы производят широкий непрерывный спектр с помощью фазовой самомодуляции. Например, из начальных 6 пс импульсов при 1050 нм, которые создает иттербиевый волоконный лазер, получается спектр в диапазоне от ультрафиолета до более 1600 нм. Другой ИК-источник суперконтинуума накачивается эрбиевым источником на длине волны 1550 нм.

Большая мощность

Промышленность в настоящее время является крупнейшим потребителем волоконных лазеров. Большим спросом сейчас пользуется мощность порядка киловатта, применяемая в автомобилестроении. Автомобильная промышленность движется к выпуску автомобилей из высокопрочной стали, чтобы они отвечали требованиям долговечности и были относительно легкими для большей экономии топлива. Обычным станкам очень трудно, например, пробивать отверстия в этом виде стали, а источники когерентного излучения делают это легко.

Резка металлов волоконным лазером, по сравнению с квантовыми генераторами других типов, обладает рядом преимуществ. Например, ближний инфракрасный диапазон волн хорошо поглощается металлами. Луч может быть доставлен по волокну, что позволяет роботу легко перемещать фокус при резке и сверлении.

Оптоволокно удовлетворяет самым высоким требованиям к мощности. Оружие ВМФ США, испытанное в 2014 г., состоит из 6-волоконных 5,5-кВт лазеров, объединенных в один пучок и излучающих через формирующую оптическую систему. 33 кВт установка была использована для поражения Хотя луч не является одномодовым, система представляет интерес, так как позволяет создать волоконный лазер своими руками из стандартных, легкодоступных компонентов.

Самая высокая мощность одномодового источника когерентного излучения компании IPG Photonics составляет 10 кВт. Задающий генератор производит киловатт оптической мощности, которая подается в каскад усилителя с накачкой при 1018 нм со светом от других волоконных лазеров. Вся система имеет размер двух холодильников.

Применение волоконных лазеров распространилось также на высокомощную резку и сварку. Например, они заменили контактную сварку листовой стали, решая проблему деформации материала. Управление мощностью и другими параметрами позволяет очень точно резать кривые, особенно углы.

Самый мощный многомодовый волоконный лазер - установка для резки металлов того же производителя - достигает 100 кВт. Система основана на комбинации некогерентного пучка, так что это не луч сверхвысокого качества. Такая стойкость делает волоконные лазеры привлекательными для промышленности.

Бурение бетона

Многомодовый волоконный лазер мощностью 4 кВт может использоваться для резки и бурения бетона. Зачем это нужно? Когда инженеры пытаются достичь сейсмостойкости существующих зданий, нужно быть очень осторожным с бетоном. При установке в нем, например, стальной арматуры обычное ударное бурение может привести к появлению трещин и ослабить бетон, но волоконные лазеры режут его без дробления.

Квантовые генераторы с модулированной добротностью волокна используются, например, для маркировки или при производстве полупроводниковой электроники. Также они используются в дальномерах: модули размером с руку содержат безопасные для глаз волоконные лазеры, мощность которых составляет 4 кВт, частота 50 кГц и длительность импульса 5-15 нс.

Обработка поверхностей

Существует большой интерес в небольших волоконных лазерах для микро- и нанообработки. При снятии поверхностного слоя, если длительность импульса короче 35 пс, отсутствует разбрызгивание материала. Это исключает образование углублений и других нежелательных артефактов. Импульсы в фемтосекундном режиме производят нелинейные эффекты, которые не чувствительны к длине волны и не нагревают окружающее пространство, что позволяет работать без существенного повреждения или ослабления окружающих участков. Кроме того, отверстия могут быть разрезаны с большим отношением глубины к ширине - например, быстро (в течение нескольких миллисекунд) проделать небольшие отверстия в 1-мм нержавеющей стали с помощью 800-фс импульсов с частотой 1 МГц.

Можно также производить поверхностную обработку прозрачных материалов, например, глаза человека. Чтобы вырезать лоскут при микрохирургии глаза, фемтосекундные импульсы плотно фокусируются высокоапертурным объективом в точке ниже поверхности глаза, не вызывая никаких повреждений на поверхности, но разрушая материал глаза на контролируемой глубине. Гладкая поверхность роговицы, которая имеет важное значение для зрения, остается целой и невредимой. Лоскут, отделенный снизу, затем может быть подтянут для поверхностного эксимер-лазерного формирования линзы. Другие медицинские применения включают хирургию неглубокого проникновения в дерматологии, а также использование в некоторых видах оптической когерентной томографии.

Фемтосекундные лазеры

Фемтосекундные квантовые генераторы в науке используют для спектроскопии возбуждения с лазерным пробоем, флуоресцентной спектроскопии с временным разрешением, а также для общего исследования материалов. Кроме того, они нужны для производства фемтосекундных частотных гребенок, необходимых в метрологии и общих исследованиях. Одним из реальных применений в краткосрочной перспективе станут атомные часы для спутников GPS нового поколения, что позволит увеличить точность позиционирования.

Одночастотный волоконный лазер производится с шириной спектральной линии менее 1 кГц. Это впечатляюще небольшое устройство с выходом излучения мощностью от 10 мВт до 1 Вт. Находит применение в области связи, метрологии (например, в волоконных гироскопах) и спектроскопии.

Что дальше?

Что касается других научно-исследовательских применений, то еще многие из них изучаются. Например, военная разработка, которую можно применять и в других областях, заключающаяся в комбинировании волоконно-лазерных пучков для получения одного высококачественного луча с помощью когерентной или спектральной комбинации. В результате в одномодовом луче достигается большая мощность.

Производство волоконных лазеров быстро растет, особенно для нужд автомобилестроения. Также происходит замена неволоконных устройств волоконными. Помимо общих улучшений в стоимости и производительности, появляются все более практичные фемтосекундные квантовые генераторы и источники суперконтинуума. Волоконные лазеры занимают все больше ниш и становятся источником улучшения для лазеров других типов.

Технические преимущества волоконного иттербийвого лазера.

Волоконные лазеры производства Telesis, такие как Zenith 10FQ , представляют собой современную и уникальную концепцию генерирования лазерного луча; оптическое волокно является средой, генерирующей лазер.

Типичные твердотельные лазеры с диодной накачкой (DPSSL) обладают оптоволоконными источниками света, которые используются для передачи света в удалённый кристалл, являющийся средой для генерирования лазера. Традиционные твердотельные лазеры с диодной накачкой (DPSSL) могут быть описаны как “удалённый диодный источник света, передающий свет по волокну, которое служит для торцевой накачки света в твердотельный кристалл”. Большинство систем DPSSL (diode pumped solid state laser), имеющихся сегодня на рынке, представляют собой лазеры с торцевой диодной накачкой.

Дизайн волоконного лазера Zenith 10FQ является прорывом в лазерной технологии и является адаптацией многих технических разработок лазеров, используемых в военной и телекоммуникационной сферах. Корпорация Telesis внедрила эти технические разработки в промышленные лазерные маркирующие системы. Ввиду своего исторического развития волоконные лазеры Telesis более легко интегрируются в промышленные процессы и адаптируются к широкой сфере применений, в отличие от более традиционных лазеров с диодной накачкой и волоконной передачей света.

Технические преимущества волоконных лазеров, таких как Zenith 10FQ , в сравнении с традиционными лазерами с диодной накачкой:

    Волоконные лазеры не требуют специального обслуживания

    1. Выверенная твердотельная технология

      • Меньше компонентов , требующих обслуживания

    2. Нет необходимости настраивать источник света под оптику камеры накачки

      • Оптика камеры накачки “внедрена” в активное волокно

      Нет необходимости в оптимизации лазерного источника света

      • На предприятии-изготовителе д иодный источник света фиксирован в оптимизированном положении в активной волоконной среде, генерирующей лазер.

      Нет необходимости вручную выбирать диодные источники света в границах узкого рабочего окна в надежде оптимизировать технические характеристик.

      • Диодные источники света охватывают широкий спектр, что резко увеличивает срок службы диода и обеспечивает стабильную работу.

        Диодные источники света являются широкополосными и изготовлены в соответствии с жёсткими требованиями, предъявляемыми к телекоммуникационным устройствам по непрерывной работе в экстремальных условиях. Технические условия предусматривают параметры изделий, в два раза превышающие те, которые когда-либо потребуются при промышленном применении.

      Самокалибрующийся, работающий по принципу «установил и забыл» лазер для эксплуатации без операторского сопровождения 24 часа в сутки 7 дней в неделю.

      • Система Zenith 10FQ осуществляет автоматический мониторинг мощности лазерного источника, постоянно реагирует на ситуацию, что позволяет поддерживать уровень мощности независимо от изменений в подаваемом напряжении или возможного незначительного ухудшения отдельных диодов.

        В лазерной системе Zenith ® даже при самом невероятном развитии событий, когда один диод выйдёт из строя (в каждой системе 6 накачивающих диодов), другие диоды автоматически настроят свою мощность для компенсации потери.

      Среднее время наработки на отказ составляет 100.000 часов непрерывной работы.

      Испытано в реальных условиях

      • Тысячи волоконных лазеров круглосуточно используются в военной сфере и сфере телекоммуникации.

    Волоконные лазеры Zenith ® могут работать в более суровых окружающих условиях, чем традиционные лазеры.

    1. Твердотельный дизайн позволяет лазеру быть устойчивым к более значительным колебаниям температур, чем способен лазер с диодной накачкой.

      Оптика накачивающей камеры системы Zenith 10FQ «впаяна» в активное волокно, что позволяет использовать установку в условиях повышенной влажности, до 90% (без конденсата), что является гораздо более высоким значением, чем ограничения для традиционных лазеров с диодной накачкой с незащищённой оптикой камеры накачки.

    В качестве стандартной функции волоконный лазер Zenith 10FQ обладает встроенными в панель измерителем мощности и индикаторами ошибок.

    • Цифровые измерители мощности показывают реальную мощность лазера на передней панели контроллера. Индикаторы ошибок на панели предоставляют моментальную информацию по состоянию лазерной маркирующей системы.

      Самокалибрующаяся мощность лазера, монитор с информацией о мощности и индикаторы ошибок, а также высокий срок службы диодов и дублирующая цепь приводит к тому, что оператору не нужно проводить еженедельную проверку и настройку, которые являются неотъемлемой чертой стандартных лазерных систем с торцевой диодной накачкой.

    Воздушное охлаждение, теплоотведение

    1. Волоконные лазеры Telesis нагреваются меньше, чем любые другие лазеры, благодаря превосходному КПД преобразования питания.

      • Нет необходимости в водяном охлаждении, которое может протечь, или сложных охлаждающих схемах, таких как активные охлаждающие плиты Thermoelectric , которые могут выйти из строя.

    Одномодовая волоконная подающая линия с практически идеальным профилем луча

    1. Стабильность луча во время работы означает высокое качество маркировки и формирования символов вне зависимости от установок.

      • Качество луча (фактор M 2) для лазера Zenith 10FQ составляет менее 2 (между 1.5 и 1.8 в зависимости от выбранной оптики), что создаёт форму луча, оптимальную для маркировки металла и пластика.

        Качество профиля луча остаётся одинаковым при динамике рабочего диапазона от 0.01 до 10 Вт выходной мощности (в отличие от большинства систем с диодной накачкой, которые нестабильны при нижних 5% и верхних 10% рабочего диапазона).

    2. Идеальный профиль луча означает, что на изделие можно направлять более высокие уровни энергии, что позволяет:

      • Осуществить более быструю и глубокую маркировку на материале

        Направить высококачественный фокусируемый луч с лучшей управляемостью на нежелательные заново отлитые и подверженные термической обработке зоны.

        Сократить цикл работы

    Высокая скорость повтор ений модуляции нагрузки добротности луча (beam Q - switching )

    1. Высокая скорость повторений с оптимизированными импульсами позволяет достичь того, что иногда называется “более холодный лазерный луч ”

      • Ограничивает ся нежелательное сжигание пластика, фольги, бумаги или субстрата.

        Можно маркировать более широкий диапазон пластиковых материалов, добиваясь контраста при обесцвечивании только маркируемой области.

        Огранич ение газообразования при маркировке материалов, таких как пластик, в процессе чего возникают неравномерные накопления отходов на некоторых материалах.

        Проще регулировать глубину маркировки .

    Простое и стандартной подключение к переменному току и высокие КПД потребления электричества

    1. Один из самых производительных лазеров из когда-либо созданных

      • Общая сила тока для Zenith 10FQ (только лазера) составляет всего лишь 2 А. Подаваемое напряжение - 230 В, 60Гц.Примечание : подаваемое электричество должно иметь предохранитель на 250В при 6 А

    При добавлении внешних устройств или приспособлений для автоматической подачи сила тока увеличивается, что повышает потребление питания всей системой

    Внешне водяное охлаждение не требуется.

Энергетический КПД в два раза превышает значение самой лучшей системы с диодной накачкой.

  • При работе системы Zenith 10FQ (только лазер) потребляется менее 600Вт. Обычный лазер с диодной накачкой потребляет более 1,15КВт.

    Со временем маркирующая лазерная система Zenith 10FQ позволит достичь значительную экономию на потребляемой энергии

Zenith 10FQ менее восприимчив к небольшим изменениям в подаваемом питании, чем большинство лазерных систем с диодной накачкой.

  • Используются широкополосные диоды для достижения максимальной производительности

    Внутренняя контролирующая цепь для коррекции мощности лазера

    Простой и рациональный промышленный дизайн

    1. Встроенный диод с красным светом фокально выровненный с основным лазерным направлением

      • Простая настройка и холостой запуск

    2. Расстояние между лазерным контролером и фокусирующего оптического блока может быть до 5 метров ( Telesis оставляет за собой право конфигурировать длину подающего волокна для оптимизация конкретных условий применения).

      • Небольшая лёгкая головка может быть интегрирована практически в любом положении.

        Гибкая армированная защита вокруг оптических частей

      Стандартный 19-дюймовый контроллер, монтируемый на стойку

      • Легко смонтировать в существующую производственную линию или новую специальную рабочую станцию.

      Управление посредством гибкого , усовершенствуемого, стандартного персонального компьютера.

      • Стандартные настольные компьютеры и мониторы

        В качестве опции поставляются портативные компьютеры с интерфейсными картами

    Простота в обслуживании

    1. Нет необходимости в расходных лампах или фильтрах

      Упрощенный модульный дизайн включает четыре блока, которые могут потребовать обслуживания или замены любым техником прямо на месте.

      • ПК или ПО

        Лазерный контроллер / лазерный источник

        Армированный кабель / кабельный интерфейс

        Фокусирующий оптический блок

Экономические преимущества волоконного лазера Zenith 10FQ

  1. Гарантия
    1. Гарантия на диодные источники света Zenith 10FQ составляет невероятные 20.000 часов (замеряемые на встроенном таймере лазерного источника) или два года с даты поставки.
      • Опыт эксплуатации данных волоконных лазеров показывает время наработки на отказ около 75.000 часов, в среднем. (мы рекламируем это достижение как “Эксплуатация системы без обслуживания более 50.000”).
    2. Большинство система с торцевой диодной накачкой могут предложить только гарантию 10.000 часов на источник света ввиду вручную выбираемых узкополосных диодов, необходимых для работы, и непроизводительность удалённой торцевой накачки кристалла, генерирующего лазер. Некоторые компании предлагают сложную схему пропорциональных 15,000 часов, при которых вы платите за процент времени, в течение которого вы «потребляли» диодный источник.
      • На ранних этапах существования систем с диодной накачкой целью было получить наработку на отказ 10.000 часов.
      • Опыт использования систем с диодной накачкой нового поколения показывает средний срок наработки на отказ - около 15.000 часов.
      • При использовании Zenith 10FQ это произойдёт между 50.000 и 100.000 часами, при этом 75.000 часов является средним значением.
        • Например, при трёхсменной работе, 24 часа в сутки, 50 недель, получаем 8.400 часов в год; тогда средний показатель наработки на отказ 75.000 часов означает замену диода раз в 9 лет при использовании системы Zenith 10FQ .
      • Замена диода в системе с диодной накачкой произойдёт между 10.000 и 20.000 часами, при этом среднее количество часов - 15.000.
        • Например, при трёхсменной работе, 24 часа в сутки, 50 недель, получаем 8.400 часов в год; тогда средний показатель наработки на отказ 15,000 часов означает замену диода раз в 2 года при использовании систем с диодной накачкой.
  2. Большой срок эксплуатации до потребности в замене частей
    1. В конце концов, все диодные источники света потребуют замены или обслуживания за счёт пользователя.
  3. Эксплуатационные расходы (преимущество Zenith 10FQ )
    1. Худший вариант развития событий.
      • Стоимость замены диодного источника света для Zenith® 10F составляет около $8,550. Стоимость замены источника света для типичной системы торцевой диодной накачки составляет около $7,500. При худшем варианте развития событий при использовании Zenith 10FQ , когда источник придётся менять вне гарантии, рассчитаем затраты на замену источника света стоимостью $8.500 после срока гарантии, составляющего 50.000 часов. 1.8,500 долларов разделить на 50.001 час, что составит $0.17 в час при использовании Zenith 10FQ (в худшем случае).
      • При худшем варианте развития событий при использовании типичной системы с торцевой диодной накачкой рассчитаем затраты на замену источника света стоимостью $7.500 после срока гарантии, составляющего 10.000 часов. 1.7,500 долларов разделить на 10,001 час, что составит $0.75 в час при использовании системы с диодной накачкой (в худшем случае).
    2. Лучший вариант развития событий. Принимая во внимание, что среднее время наработки на отказ волоконной лазерной системы Zenith 10FQ составляет 100.000 часов, а типичной системы с диодной накачкой - 15,000 часов, тогда:
      • При лучшем варианте развития событий для Zenith 10FQ затраты на замену источника света стоимостью $8.500 с учётом наработки на отказ 100.000 часов составят: $8.500 разделить на 100,000 часов, что составит $0.09 в час при использовании Zenith 10FQ (в лучшем случае).
      • При лучшем варианте развития событий для типичной системы с торцевой диодной накачкой затраты на замену источника света стоимостью $7.500 с учётом наработки на отказ 15.000 часов составят: $7.500 разделить на 15,000 часов, что составит $0.50 в час при использовании системы с диодной накачкой (в лучшем случае).
  4. Ежедневное потребление энергии
    1. Волоконные лазеры обладают в два раза большим энергетическим КПД, чем самые лучшие системы с диодной накачкой. При работе Zenith® 10FQ в полную мощность (только лазер) потребляется менее 600 Вт электрической энергии.
      • Например, при использовании Zenith 10FQ , если, в среднем, кВт/час стоит 2 руб. за кВт; тогда потребление за одни сутки непрерывного использования составят 600 Вт/час умножить на 24 час равно 14.4 кВт.
      • При стоимости 1 кВт 2 руб. максимальные затраты в сутки составят: 2 руб. Х 14.4 кВт = 28,80 руб. при использовании Zenith 10FQ .
    2. Типичная система с диодной накачкой потребляет более 1,15 кВт электрической энергии.
      • Например, при использовании системы с диодной накачкой, если, в среднем, кВт/час стоит 2 руб. за кВт; тогда потребление за одни сутки непрерывного использования составят 1.150 Вт/час умножить на 24 час равно 27,6 кВт.
      • При стоимости 1 кВт 2 руб. максимальные затраты в сутки составят: 2 руб. Х 27.6 кВт = 55,20 руб. при использовании типичной системы с диодной накачкой.

Преимущества волоконного лазера перед лазерами с диодной и ламповой накачкой

    Лучшее качество луча

    Более высокий электрический КПД

    Большая надёжность

    Низкие эксплуатационные расходы

    Низкие расходы на обслуживание

    Небольшой размер

    Удалённая передача луча

    Гарантия - 20 тыс. часов работы

    Наработка на отказ от 30 до 50 тыс. часов. Среднее время - 100 тыс. часов до выхода элемента накачки лазера из строя

Изучение проблемы лазерной резки металлов необходимо начать с рассмотрения физических основ работы лазера. Поскольку далее в работе все исследования точности лазерной резки тонколистовых материалов будут проводиться на лазерном комплексе, использующем иттербиевый волоконный лазер, рассмотрим устройство волоконных лазеров.

Лазер – устройство, преобразующее энергию накачки (световую, электрическую, тепловую, химическую и др.) в энергию когерентного, монохроматического, поляризованного и узконаправленного потока излучения.

Волоконные лазеры были разработаны сравнительно недавно, в 1980-х годах. В настоящее время известны модели волоконных технологических лазеров мощностью до 20 кВт. Их спектральный состав находится в пределах от 1 до 2 мкм. Использование таких лазеров позволяет обеспечить различные временные характеристики излучения.

В последнее время волоконные лазеры активно вытесняют традиционные лазеры из таких областей применения лазерной техники, как, например, лазерная резка и сварка металлов, маркировка и обработка поверхностей, полиграфия и скоростная лазерная печать. Их используют в лазерных дальномера и трехмерных локаторах, аппаратуре для телекоммуникаций, в медицинских установках и т.д.

Основными типами волоконных лазеров являются непрерывные одномодовые лазеры, в том числе однополяризационные и одночастотные; импульсные волоконные лазеры, работающие в режиме модуляции добротности, синхронизации мод, а также в произвольном режиме модуляции; перенастраиваемые волоконные лазеры; сверхлюминисцентные волоконные лазеры; мощные непрерывные многомодовые волоконные лазеры.

Принцип работы лазера основан на пропускании света фотодиода по волокну большой протяженности. Волоконный лазер состоит из модуля накачки (как правило, широкополосные светодиоды или лазерные диоды), световода, в котором происходит генерация, и резонатора. Световод содержит активное вещество (легированнное оптическое волокно - сердцевина без оболочки, в отличие от обычных оптических волноводов) и волноводы накачки. Конструкция резонатора обычно определяется техническим заданием, но можно выделить наиболее распространенные классы: резонаторы типа Фабри - Перо и кольцевые резонаторы. В промышленных установках для повышения выходной мощности иногда объединяют несколько лазеров в одной установке. На рис. 1.2 показана упрощенная схема устройства волоконного лазера.

Рис. 1.2. Типичная схема волоконного лазера.

1 - активное волокно; 2 - брэгговские зеркала; 3 - блок накачки.

Основной материал для активного оптического волокна – кварц. Высокая прозрачность кварца обеспечивается насыщенными состояниями энергетических уровней атомов. Примеси, вносимые легированием, превращают кварц в поглощающую среду. Подобрав мощность излучения накачки, в такой среде можно создать инверсное состояние заселённостей энергетических уровней (то есть, высокоэнергетические уровни будут заполнены больше, чем основной). Исходя из требований на резонансную частоту (инфракрасный диапазон для телекоммуникаций) и малую пороговую мощность накачки, как правило, легирование выполняют редкоземельными элементами группы лантаноидов. Одним из распространённых типов волокон являетсяэрбиевое, используемое в лазерных и усилительных системах, рабочий диапазон которых лежит в интервале длин волн 1530-1565 нм. Вследствие различной вероятности переходов на основной уровень с подуровней метастабильного уровня, эффективность генерации или усиления отличается для различных длин волн в рабочем диапазоне. Степень легирования редкоземельными ионами обычно зависит от длины изготовляемого активного волокна. В пределах до нескольких десятков метров она может составлять от десятков до тысяч ppm, а в случае километровых длин - 1 ppm и менее.

Брэгговские зеркала – распределённый брэгговский отражатель - это слоистая структура, в которой коэффициент преломленияматериала периодически изменяется в одном пространственном направлении (перпендикулярно слоям).

Существуют различные конструкции накачки оптических волноводов, из которых наиболее употребительными являются чисто волоконные конструкции. Одним из вариантов является размещение активного волокна внутри нескольких оболочек, из которых внешняя является защитной (так называемое волокно с двойным покрытием). Первая оболочка изготовляется из чистого кварца диаметром в несколько сотен микрометров, а вторая - из полимерного материала, показатель преломления которого подбирается существенно меньшим, чем у кварца. Таким образом, первая и вторая оболочки создают многомодовый волновод с большим поперечным сечением и числовой апертурой, в который запускается излучение накачки. На рис. 1.3 показана схема накачки лазера, основанного на волокне с двойным покрытием.

Рис. 1.3. Схема накачки лазера, основанного на волокне с двойным покрытием.

К преимуществам волоконных лазеров традиционно относят значительное отношение площади резонатора к его объёму, что обеспечивает качественное охлаждение, термостойкость кремния и небольшие размеры приборов в подобных классах требований по мощности и качеству. Лазерный луч, как правило, необходимо завести в оптическое волокно для последующего использования в технике. Для лазеров иной конструкции это требует специальных оптических систем коллимации и делает устройства чувствительными к вибрациям. В волоконных лазерах генерация излучения происходит непосредственно в волокне, и оно имеет высокое оптическое качество. Недостатками данного типа лазеров являются опасность возникновения нелинейных эффектов из-за высокой плотности излучения в волокне и сравнительно небольшая выходная энергия в импульсе, обусловленная малым объёмом активного вещества.

Волоконные лазеры проигрывают твердотельным в сферах применения, где требуется высокая стабильность поляризации, а использование сохраняющего поляризацию волокна затруднено по различным причинам. Твердотельные лазеры не могут быть заменены волоконными в спектральном диапазоне 0,7-1,0 мкм. Они также имеют больший потенциал для наращивания выходной мощности импульса по сравнению с волоконными. Однако волоконные лазеры показывают хорошие результаты на длинах волн, где не существует достаточно хороших активных сред или зеркал для лазеров иных конструкций, и позволяют с меньшими сложностями реализовывать некоторые лазерные схемы наподобие up-конверсии.