Определение статистической оценки неизвестного параметра. Статистические оценки параметров распределения

) задач математической статистики .

Предположим, что имеется параметрическое семейство распределений вероятностей (для простоты будем рассматривать распределение случайных величин и случай одного параметра). Здесь - числовой параметр, значение которого неизвестно. Требуется оценить его по имеющейся выборке значений, порожденной данным распределением.

Различают два основных типа оценок: точечные оценки и доверительные интервалы .

Точечное оценивание

Точечное оценивание - это вид статистического оценивания, при котором значение неизвестного параметра приближается отдельным числом. То есть необходимо указать функцию от выборки (статистику)

,

значение которой будет рассматриваться в качестве приближения к неизвестному истинному значению .

К общим методам построения точечных оценок параметров относятся: метод максимального правдоподобия , метод моментов , метод квантилей .

Ниже приводятся некоторые свойства, которыми могут обладать или не обладать точечные оценки.

Состоятельность

Одно из самых очевидных требований к точечной оценке заключается в том, чтобы можно было ожидать достаточно хорошего приближения к истинному значению параметра при достаточно больших значениях объема выборки . Это означает, что оценка должна сходиться к истинному значению при . Это свойство оценки и называется состоятельностью . Поскольку речь идет о случайных величинах, для которых имеются разные виды сходимости, то и данное свойство может быть точно сформулировано по-разному:

Когда употребляют просто термин состоятельность , то обычно имеется в виду слабая состоятельность, т.е. сходимость по вероятности.

Условие состоятельности является практически обязательным для всех используемых на практике оценок. Несостоятельные оценки используются крайне редко.

Несмещенность и асимптотическая несмещенность

Оценка параметра называется несмещенной , если ее математическое ожидание равно истинному значению оцениваемого параметра:

.

Более слабым условием является асимптотическая несмещенность , которая означает, что математическое ожидание оценки сходится к истинному значению параметра с ростом объема выборки:

.

Несмещенность является рекомендуемым свойством оценок. Однако не следует слишком переоценивать его значимость. Чаще всего несмещенные оценки параметров существуют и тогда стараются рассматривать только их. Однако могут быть такие статистические задачи, в которых несмещенных оценок не существует. Наиболее известным примером является следующий: рассмотрим распределение Пуассона с параметром и поставим задачу оценки параметра . Можно доказать, что для этой задачи не существует несмещенной оценки.

Сравнение оценок и эффективность

Для сравнения между собой различных оценок одного и того же параметра применяют следующий метод: выбирают некоторую функцию риска , которая измеряет отклонение оценки от истинного значения параметра, и лучшей считают ту, для которой эта функция принимает меньшее значение.

Чаще всего в качестве функции риска рассматривают математическое ожидание квадрата отклонения оценки от истинного значения

Для несмещенных оценок это есть просто дисперсия .

Существует нижняя граница на данную функцию риска, называемая неравенство Крамера-Рао .

(Несмещенные) оценки, для которых достигается эта нижняя граница (т.е. имеющие минимально возможную дисперсию), называются эффективными . Однако существование эффективной оценки есть довольно сильное требование на задачу, которое имеет место далеко не всегда.

Более слабым является условие асимптотической эффективности , которое означает, что отношение дисперсии несмещенной оценки к нижней границе Крамера-Рао стремится к единице при .

Заметим, что при достаточно широких предположениях относительно исследуемого распределения, метод максимального правдоподобия дает асимптотически эффективную оценку параметра, а если существует эффективная оценка - тогда он дает эффективную оценку.

Достаточные статистики

Статистика назвается достаточной для параметра , если условное распределение выборки при условии того, что , не зависит от параметра для всех .

Важность понятия достаточной статистики обуславливается следующим утверждением . Если - достаточная статистика, а - несмещенная оценка параметра , тогда условное математическое ожидание является также несмещенной оценкой параметра , причем ее дисперсия меньше или равна дисперсии исходной оценки .

Напомним, что условное математическое ожидание есть случайная величина, являющаяся функцией от . Таким образом, в классе несмещенных оценок достаточно рассматривать только такие, которые являются функциями от достаточной статистики (при условии, что такая существует для данной задачи).

(Несмещенная) эффективная оценка параметра всегда является достаточной статистикой.

Можно сказать, что достаточная статистика содержит в себе всю информацию об оцениваемом параметре, которая содержится в выборке .

Пусть требуется изучить, к примеру, количественный признак генеральной совокупности. Допустим, что из теоретических соображений удалось установить, какое именно распределение имеет признак. Естественно, возникает задача оценки параметров, которыми определяется это распределение. Например, если наперед известно, что изучаемый признак распределен в генеральной совокупности нормально, то необходимо оценить (приближенно найти) математическое ожидание а и среднее квадратическое отклонение s, так как эти два параметра полностью определяют нормальное распределение.

Обычно в распоряжении исследователя имеются лишь данные выборки, например, значения количественного признака х 1 , х 2 , …, х n , полученные в результате n наблюдений. Через эти данные и выражают оцениваемый параметр .

Пусть q * - статистическая оценка неизвестного параметра q теоретического распределения. Различают несмещённую и смещённую оценки.

Несмещённой называют статистическую оценку q * , математическое ожидание которой равно оцениваемому параметру q при любом объеме выборки, то есть

В противном случае, то есть если М(q *) ¹ q, оценка называется смещённой .

Требование несмещённости означает, что не должно быть систематического отклонения в одну и ту же сторону наблюдаемых значений от q.

К статистической оценке предъявляется также требование эффективности , что подразумевает (при заданном объеме выборки) наименьшую возможную дисперсию, а в случае большого объема выборки и требование состоятельности , то есть практическое совпадение наблюдаемых значений случайной величины с оцениваемым параметром.

Если статистический материал представлен в виде вариационного ряда, то последующий его анализ осуществляется, как правило, с помощью некоторых постоянных величин, достаточно полно отражающих присущие изучаемой генеральной совокупности закономерности.

К таким постоянным относятся средние величины, среди которых наиболее значимой является средняя арифметическая - она проще других и по смыслу, и по свойствам, и по способу получения.

Так как при исследовании генеральной совокупности осуществляется выборка, то постоянная величина, характеризующая выборку, называется выборочной средней и обозначается .

Можно показать, что есть несмещённая оценка среднего арифметического значения признака генеральной совокупности , то есть

Пусть некоторая совокупность разбита на части - группы , не обязательно одинаковые по объему. Тогда средние арифметические распределения членов групп называют групповыми средними , а среднюю арифметическую распределения по тому же признаку всей совокупности - общей средней . Группы называются непересекающимися , если каждый член совокупности принадлежит только одной группе.

Общая средняя равна средней арифметической групповых средних всех непересекающихся групп.

Пример. Вычислить среднюю заработную плату рабочих предприятия по данным таблицы

Решение. По определению общая средняя равна

. (*)

n 1 = 40, n 2 = 50, n 3 = 60

Средняя заработная плата рабочих цеха № 1. Для её нахождения мы составили среднюю арифметическую зарплату по всему цеху: 75, 85, 95 и 105 (у.е.) Для удобства эти значения можно уменьшить в пять раз (это их наибольший общий делитель): 15, 17, 19, 21. Остальное понятно из формулы.

Проделав аналогичные операции, найдем , .

Подставив полученные значения в (*), получим

Средние - это постоянные величины, которые определенным образом характеризуют распределения. О некоторых распределениях судят только по средним. Например, для сравнения уровней заработной платы в различных отраслях промышленности достаточно сравнить средние заработные платы в них. Однако по средним нельзя судить ни о различиях между уровнями заработной платы наиболее высоко- и низкооплачиваемых работников, ни о том, какие отклонения от средней заработной платы имеют место.

В статистике наибольший интерес представляет разброс значений признака около их средней арифметической. На практике и в теоретических исследованиях рассеяние признака чаще характеризуется дисперсией и средним квадратическим отклонением.

Выборочной дисперсией D В называют среднее арифметическое квадратов отклонения наблюдаемых значений признака от их среднего значения .

Если все значения х 1 , х 2 , … х n признака выборки объема n различны, то

. (3)

Если же значения признака х 1 , х 2 , … х k имеют соответственно частоты n 1 , n 2 , … n k , причём n 1 + n 2 + … + n k = n, то

. (4)

Если есть необходимость, чтобы показатель рассеяния выражался в тех же единицах, что и значения признака, то можно пользоваться сводной характеристикой - средним квадратическим отклонением

Для вычисления дисперсии обычно используется формула

Если совокупность разбита на непересекающиеся группы, то для их характеристики можно ввести понятия групповой, внутригрупповой, межгрупповой и общей дисперсии.

Групповой дисперсией называется дисперсия распределения членов j-ой группы относительно их средней - групповой средней , то есть

где n i - частота значения x i , - объем группы j.

Внутригрупповой дисперсией называется средняя арифметическая групповых дисперсий

где N j (j = 1, 2, …, m) - объемы непересекающихся групп.

Межгрупповой дисперсией называется средняя арифметическая квадратов отклонений групповых средних всех непересекающихся групп от общей средней , то есть

.

Общей дисперсией называют дисперсию значений признака всей совокупности относительно общей средней

,

где n i - частота значения x i ; - общая средняя; n - объем всей совокупности.

Можно показать, что общая дисперсия D равна сумме , то есть

Пример. Найти общую дисперсию совокупности, состоящей из следующих двух групп

Первая группа Вторая группа
x i n i x i n i

Решение. Найдем групповые средние

Найдем групповые дисперсии

Найдем общую среднюю

Искомая общая дисперсия

Рассмотренные выше оценки принято называть точечными , так как эти оценки определяются одним числом . В случае небольшого объема выборки используется интервальная оценка, определяемая двумя числами , называемыми концами интервала.

Интервальные оценки позволяют установить точность и надежность оценок. Поясним смысл этих понятий. Пусть найденная по данным выборки статистическая характеристика q * служит оценкой неизвестного параметра q. Ясно, что q * тем точнее будет определять параметр q, чем меньше абсолютная величина . Иными словами, если d > 0 и , то чем меньше d, тем оценка точнее.

Таким образом, число d > 0 характеризует точность оценки. Но с другой стороны статистические методы не позволяют категорически утверждать, что оценка q * удовлетворяет неравенству . Здесь можно говорить только о вероятности g , с которой это неравенство осуществляется. Эту вероятность g и называют надежностью (доверительной вероятностью) оценки q по q * .

Таким образом, из сказанного следует, что

Соотношение (*) следует понимать так: вероятность того, что интервал (q * - d, q * + d) заключает в себе (покрывает) неизвестный параметр q, равна g. Интервал (q * - d, q * + d), покрывающий неизвестный параметр с заданной надежностью g, называют доверительным.

Пример. Случайная величина Х имеет нормальное распределение с известным средним квадратическим отклонением s = 3. Найти доверительные интервалы для оценки неизвестного математического ожидания а по выборочным средним , если объем выборки n = 36 и задана надежность оценки g = 0,95.

Решение. Заметим, что если случайная величина Х распределена нормально, то выборочная средняя , найденная по независимым наблюдениям, также распределена нормально, а параметры распределения таковы: , (см. стр. 54).

Потребуем выполнения соотношения

.

Пользуясь формулой (**) (см. стр. 43), заменив в ней Х на и s на , получим


Определение статистической оценки. Точечные статистические оценки: смещенные и несмещенные, эффективные и состоятельные. Интервальные статистические оценки. Точность и надежность оценки; определение доверительного интервала; построение доверительных интервалов для средней при известном и неизвестном среднеквадратическом отклонении.

Определение статистической оценки

Пусть требуется изучить количественный признак генеральной совокупности. Допустим, что из теоретических соображений удалось установить, какое именно распределение имеет признак. Возникает задача оценки параметров, которыми определяется это распределение. Например, если известно, что изучаемый признак распределен в генеральной совокупности по нормальному закону, то необходимо оценить математическое ожидание и среднеквадратическое отклонение, так как эти два параметра полностью определяют нормальное распределение. Если имеются основания считать, что признак имеет распределение Пуассона, то необходимо оценить параметр , которым это распределение определяется. Обычно имеются лишь данные выборки, полученные в результате наблюдений: . Через эти данные и выражают оцениваемый параметр. Рассматривая как значения независимых случайных величин можно сказать, что найти статистическую оценку неизвестного параметра теоретического распределения означает найти функцию от наблюдаемых случайных величин, которая и дает приближенное значение оцениваемого параметра.

Точечные статистические оценки

Статистической оценкой неизвестного параметра теоретического распределения называют функцию от наблюдаемых случайных величин. Статистическая оценка неизвестного параметра генеральной совокупности одним числом называется точечной . Рассмотрим следующие точечные оценки : смещенные и несмещенные, эффективные и состоятельные.


Для того чтобы статистические оценки давали хорошие приближения оцениваемых параметров, они должны удовлетворять определенным требованиям. Укажем эти требования. Пусть есть статистическая оценка неизвестного параметра теоретического распределения. Допустим, что по выборке объема найдена оценка . Повторим опыт, т. е. извлечем из генеральной совокупности другую выборку того же объема и по ее данным найдем оценку и т. д. Получим числа , которые будут различаться. Таким образом, оценку можно рассматривать как случайную величину, а числа - как возможные ее значения.


Если оценка дает приближенное значение с избытком, то найденное по данным выборок число будет больше истинного значения . Следовательно, и математическое ожидание (среднее значение) случайной величины будет превышать , то есть . Если дает приближенное значение с недостатком, то .


Использование статистической оценки, математическое ожидание которой не равно оцениваемому параметру, приводит к систематическим ошибкам. Поэтому нужно потребовать, чтобы математическое ожидание оценки было равно оцениваемому параметру. Соблюдение требования устраняет систематические ошибки.


Несмещенной называют статистическую оценку , математическое ожидание которой равно оцениваемому параметру , то есть .


Смещенной называют статистическую оценку , математическое ожидание которой не равно оцениваемому параметру.


Однако ошибочно считать, что несмещенная оценка всегда дает хорошее приближение оцениваемого параметра. Действительно, возможные значения могут быть сильно рассеяны вокруг своего среднего значения, т. е. дисперсия величины может быть значительной. В этом случае найденная по данным одной выборки оценка, например , может оказаться удаленной от своего среднего значения , а значит, и от самого оцениваемого параметра . Приняв в качестве приближенного значения , мы допустили бы ошибку. Если потребовать, чтобы дисперсия величины была малой, то возможность допустить ошибку будет исключена. Поэтому к статистической оценке предъявляются требования эффективности.


Эффективной называют статистическую оценку, которая (при заданном объеме выборки ) имеет наименьшую возможную дисперсию. При рассмотрении выборок большого объема к статистическим оценкам предъявляется требование состоятельности.


Состоятельной называют статистическую оценку, которая при стремится по вероятности к оцениваемому параметру. Например, если дисперсия несмещенной оценки при стремится к нулю, то такая оценка оказывается также состоятельной.


Рассмотрим вопрос о том, какие выборочные характеристики лучше всего в смысле несмещённости, эффективности и состоятельности оценивают генеральную среднюю и дисперсию.


Пусть изучается дискретная генеральная совокупность относительно количественного признака. Генеральной средней называется среднее арифметическое значений признака генеральной совокупности. Она вычисляется по формуле



где - значения признака генеральной совокупности объема ; - соответствующие частоты, причем



Пусть из генеральной совокупности в результате независимых наблюдений над количественным признаком извлечена выборка объема со значениями признака . Выборочной средней называется среднее арифметическое значений признака выборочной совокупности и вычисляется по формуле



где - значения, признака в выборочной совокупности объема ; - соответствующие частоты, причем



Если генеральная средняя неизвестна и требуется оценить ее по данным выборки, то в качестве оценки генеральной средней принимают выборочную среднюю, которая является несмещенной и состоятельной оценкой. Отсюда следует, что если по нескольким выборкам достаточно большого объема из одной и той же генеральной совокупности будут найдены выборочные средние, то они будут приближенно равны между собой. В этом состоит свойство устойчивости выборочных средних .


Если дисперсии двух совокупностей одинаковы, то близость выборочных средних к генеральным не зависит от отношения объема выборки к объему генеральной совокупности. Она зависит- от объема выборки: чем больше объем выборки, тем меньше выборочная средняя отличается от генеральной.


Для того чтобы охарактеризовать рассеяние значений количественного признака генеральной совокупности вокруг своего среднего значения, вводят сводную характеристику - генеральную дисперсию. Генеральной дисперсией называется среднее арифметическое квадратов отклонений значений признака генеральной совокупности от их среднего значения , которое вычисляется по формуле



Для того чтобы охарактеризовать рассеяние наблюденных значений количественного признака выборки вокруг своего среднего значения хв, вводят сводную характеристику - выборочную дисперсию. Выборочной дисперсией называется среднее арифметическое квадратов отклонений наблюденных значений признака от их среднего значения , которое вычисляется по формуле



Кроме дисперсии для характеристики рассеяния значений признака генеральной (выборочной) совокупности вокруг своего среднего значения используют сводную характеристику - среднее квадратическое отклонение. Генеральным средним квадратическим отклонением называют квадратный корень из генеральной дисперсии: . Выборочным средним квадратическим отклонением называют квадратный корень из выборочной дисперсии: .


Пусть из генеральной совокупности в результате независимых наблюдений над количественным признаком извлечена выборка объема . Требуется по данным выборки оценить неизвестную генеральную дисперсию . Если в качестве оценки генеральной дисперсии принять выборочную дисперсию, то эта оценка приведет к систематическим ошибкам, давая заниженное значение генеральной дисперсии. Объясняется это тем, что выборочная дисперсия является смещенной оценкой . Другими словами, математическое ожидание выборочной дисперсии не равно оцениваемой генеральной дисперсии, а равно .


Легко исправить выборочную дисперсию так, чтобы ее математическое ожидание было равно генеральной дисперсии. Для этого нужно умножить на дробь . В результате получим исправленную дисперсию , которая будет несмещенной оценкой генеральной дисперсии:


Интервальные оценки

Наряду с точечным оцениванием, статистическая теория оценивания параметров занимается вопросами интервального оценивания. Задачу интервального оценивания можно сформулировать так: по данным выборки построить числовой интервал, относительно которого с заранее выбранной вероятностью можно сказать, что внутри него находится оцениваемый параметр. Интервальное оценивание особенно необходимо при малом количестве наблюдений, когда точечная оценка малонадежна.


Доверительным интервалом для параметра называется такой интервал, относительно которого с заранее выбранной вероятностью , близкой к единице, можно утверждать, что он содержит неизвестное значение параметра , то есть . Чем меньше для выбранной вероятности число , тем точнее оценка неизвестного параметра . И, наоборот, если это число велико, то оценка, проведенная с помощью данного интервала, малопригодна для практики. Так как концы доверительного интервала зависят от элементов выборки, то значения и могут изменяться от выборки к выборке. Вероятность принято называть доверительной (надежностью). Обычно надежность оценки задается наперед, причем в качестве берут число, близкое к единице. Выбор доверительной вероятности не является математической задачей, а определяется конкретной решаемой проблемой. Наиболее часто задают надежность, равную 0,95; 0,99; 0,999.


Доверительный интервал для генеральной средней при известном значении среднего квадратического отклонения и при условии, что случайная величина (количественный признак ) распределена нормально, задается выражением



где - наперед заданное число, близкое к единице, а значения функции приведены в таблице прил. 2.


Смысл этого соотношения заключается в следующем: с надежностью можно утверждать, что доверительный интервал покрывает неизвестный параметр , точность оценки . Число определяется из равенства , или . По прил. 2 находят аргумент , которому соответствует значение функции Лапласа, равное .

Пример 1. Случайная величина имеет нормальное распределение с известным средним квадратическим отклонением . Найти доверительные интервалы для оценки неизвестной генеральной средней по выборочным средним, если объем выборок и надежность оценки .


Решение. Найдем . Из соотношения получим, что . По прил. 2 находим . Найдем точность оценки . Доверительные интервалы будут таковы: . Например, если , то доверительный интервал имеет следующие доверительные границы: . Таким образом, значения неизвестного параметра , согласующиеся с данными выборки, удовлетворяют неравенству .

Тема 7. Статистические оценки параметров распределения: точечные и интервальные оценки

Смысл статистических методов заключается в том, чтобы по выборке ограниченного объема, то есть по некоторой части генеральной совокупности, высказать обоснованное суждение о ее свойствах целиком.

Естественно, что замена исследования генеральной совокупно­сти исследованием выборки порождает ряд вопросов:

1. В какой степени выборка отражает свойства генеральной совокупности, т. е. в какой степени выборка репрезентативна по отношению к генеральной совокупности?

2. Какую информацию о значениях параметров генеральной совокупности могут дать параметры выборки?

3. Можно ли утверждать, что полученные выборочным путем статистические характеристики (средние величины, дисперсия или любые другие производные величины) равны тем характе­ристикам, которые могут быть получены из генеральной сово­купности.

Проверка показывает, что значения параметров, полученных для разных выборок из одной генеральной совокупности, обыч­но не совпадают. Рассчитанные выборочным путем числовые значения параметров выборок являются лишь результатом при­ближенного статистического оценивания значений этих парамет­ров в генеральной совокупности. Статистическое оценивание, в силу изменчивости наблюдаемых явлений, позволяет получать только их приближенные значения.

Примечание. Строго говоря, в статистике оценка - это правило вычисления оцениваемого параметра, а термин оценить, т. е. провести оценивание, означает указать приближенное значе­ние.

Различают оценки точечные и оценки интервальные .

Точечная оценка параметров распределения

Пусть x 1 , x 2 , …, x n – выборка объема n из генеральной совокупности с функцией распределения F (x ).

Числовые характеристики этой выборки называются выборочными (эмпирическими ) числовыми характеристиками.

Отметим, что выборочные числовые характеристики являются характеристиками данной выборки, но не являются характеристиками распределения генеральной совокупности. Однако эти характеристики можно использовать для оценок параметров генеральной совокупности.

Точечной называют статистическую оценку, которая определяется одним числом.

Точечная оценка характеризуется свойствами: несмещенность, состоятельность и эффективность.

Несмещенной называют точечную оценку, математическое ожидание которой равно оцениваемому параметру при любом объеме выборки.

Точечная оценка называется состоятельной , если при неограниченном увеличении объема выборки (n ® ¥) она сходится по вероятности к истинному значению параметра, то есть стремится к истинному значению оцениваемого параметра генеральной совокупности.

Эффективной называют точечную оценку, которая (при заданном объеме выборки n ) имеет наименьшую возможную дисперсию, те есть гарантирует наименьшее отклонение выборочной оценки от такой же оценки генеральной совокупности..

В математической статистике показывается, что состоятельной, несмещенной оценкой генерального среднего значения а является выборочное средне:

где х i – варианта выборки, n i – частота варианты х i , – объем выборки.

Несмещенной оценкой генеральной дисперсии служит исправления выборочная дисперсия

,

Более удобна формула  .

Оценка s 2 для генеральной дисперсии является также и состоятельной, но не является эффективной. Однако в случае нормального распределения она является «асимптотически эффективной», то есть при увеличении n отношение ее дисперсии к минимально возможной неограниченно приближается к единице.

Итак, если дана выборка из распределения F (x ) случайной величины Х с неизвестным математическим ожиданием а и дисперсией s 2 , то для вычисления значений этих параметров мы имеем право пользоваться следующими приближенными формулами:

Точечные оценки имеют тот недостаток, что при малом объеме выборки могут значительно отличаться от оцениваемых параметров. Поэтому, чтобы получить представление о близости между параметром и его оценкой, в математической статистике вводятся, так называемые, интервальные оценки.

Доверительный интервал

Если при статистической обработке результатов требуется найти не только точечную оценку неизвестного параметра θ, но и охарактеризовать точность этой оценки, то находится доверительный интервал.

Доверительный интервал – это интервал, в котором заранее заданной доверительной вероятностью находится неизвестный параметр генеральной совокупности.

Доверительная вероятность – это вероятность, с которой неизвестный параметр генеральной совокупности принадлежит доверительному интервалу.

Длина доверительного интервала характеризует точность интервального оценивания и зависит от объема выборки и доверительной вероятности. При увеличении объема выборки длина доверит. интервала уменьшается (точность увеличивается), а при стремлении доверительной вероятности к 1 длина доверит. интервала увеличивается (точность уменьшается) Наряду с доверительной вероятностью р часто на практике используют уровень значимости α = 1 - p.

Обычно принимают р = 0,95 или (реже) 0,99. Эти вероятности признаны достаточными для уверенного суждения о генеральных параметрах на основании известных выборочных показателей.

Доверительный интервал для математического ожидания имеет вид: где S – СКО, - критическое значение распределения Стьюдента (Смотри ПРИЛОЖЕНИЕ 1 к Теме 7)

Распределение случайной величины (распределение генеральной совокупности) характеризуется обычно рядом числовых характеристик:

  • для нормального распределения N(a, σ) - это математическое ожидание a и среднее квадратическое отклонение σ ;
  • для равномерного распределения R(a,b) - это границы интервала , в котором наблюдаются значения этой случайной величины.
Такие числовые характеристики, как правило, неизвестные, называются параметрами генеральной совокупности . Оценка параметра - соответствующая числовая характеристика, рассчитанная по выборке. Оценки параметров генеральной совокупности делятся на два класса: точечные и интервальные .

Когда оценка определяется одним числом, она называется точечной оценкой . Точечная оценка, как функция от выборки, является случайной величиной и меняется от выборки к выборке при повторном эксперименте.
К точечным оценкам предъявляют требования, которым они должны удовлетворять, чтобы хоть в каком-то смысле быть «доброкачественными». Это несмещённость , эффективность и состоятельность .

Интервальные оценки определяются двумя числами – концами интервала, который накрывает оцениваемый параметр. В отличие от точечных оценок, которые не дают представления о том, как далеко от них может находиться оцениваемый параметр, интервальные оценки позволяют установить точность и надёжность оценок.

В качестве точечных оценок математического ожидания, дисперсии и среднего квадратического отклонения используют выборочные характеристики соответственно выборочное среднее, выборочная дисперсия и выборочное среднее квадратическое отклонение.

Свойство несмещенности оценки .
Желательным требованием к оценке является отсутствие систематической ошибки, т.е. при многократном использовании вместо параметра θ его оценки среднее значение ошибки приближения равно нулю - это свойство несмещенности оценки .

Определение . Оценка называется несмещенной , если ее математическое ожидание равно истинному значению оцениваемого параметра:

Выборочное среднее арифметическое является несмещенной оценкой математического ожидания, а выборочная дисперсия - смещенная оценка генеральной дисперсии D . Несмещенной оценкой генеральной дисперсии является оценка

Свойство состоятельности оценки .
Второе требование к оценке - ее состоятельность - означает улучшение оценки с увеличением объема выборки.

Определение . Оценка называется состоятельной , если она сходится по вероятности к оцениваемому параметру θ при n→∞.


Сходимость по вероятности означает, что при большом объеме выборки вероятность больших отклонений оценки от истинного значения мала.

Свойство эффективной оценки .
Третье требование позволяет выбрать лучшую оценку из нескольких оценок одного и того же параметра.

Определение . Несмещенная оценка является эффективной , если она имеет наименьшую среди всех несмещенных оценок дисперсию.

Это означает, что эффективная оценка обладает минимальным рассеиванием относительно истинного значения параметра. Заметим, что эффективная оценка существует не всегда, но из двух оценок обычно можно выбрать более эффективную, т.е. с меньшей дисперсией. Например, для неизвестного параметра a нормальной генеральной совокупности N(a,σ) в качестве несмещенной оценки можно взять и выборочное среднее арифметическое, и выборочную медиану. Но дисперсия выборочной медианы примерно в 1.6 раза больше, чем дисперсия среднего арифметического. Поэтому более эффективной оценкой является выборочное среднее арифметическое.

Пример №1 . Найдите несмещенную оценку дисперсии измерений некоторой случайной величины одним прибором (без систематических ошибок), результаты измерения которой (в мм): 13,15,17.
Решение. Таблица для расчета показателей.

x |x - x ср | (x - x ср) 2
13 2 4
15 0 0
17 2 4
45 4 8

Простая средняя арифметическая (несмещенная оценка математического ожидания)


Дисперсия - характеризует меру разброса около ее среднего значения (мера рассеивания, т.е. отклонения от среднего - смещенная оценка).


Несмещенная оценка дисперсии - состоятельная оценка дисперсии (исправленная дисперсия).

Пример №2 . Найдите несмещенную оценку математического ожидания измерений некоторой случайной величины одним прибором (без систематических ошибок), результаты измерения которой (в мм): 4,5,8,9,11.
Решение. m = (4+5+8+9+11)/5 = 7.4

Пример №3 . Найдите исправленную дисперсию S 2 для выборки объема n=10, если выборочная диспресия равна D = 180.
Решение. S 2 = n*D/(n-1) = 10*180/(10-1) = 200