Аварии и чп на российских космических кораблях "союз". Многоцелевой КК «Союз Как выглядит космический корабль союз

11 сентября 2013 года при возвращении космонавтов с Международной космической станции (МКС) космического корабля "Союз ТМА-08М". Часть пути космонавты "летели на ощупь". В частности, экипаж не получал параметров о своей высоте и только по докладам спасательной службы узнавал, на какой высоте находится.

27 мая 2009 года с космодрома Байконур был осуществлен запуск космического корабля "Союз ТМА-15". На борту корабля находились российский космонавт Роман Романенко, астронавт Европейского космического агентства Франк Де Винн и астронавт Канадского космического агентства Роберт Тирск. Во время полета внутри пилотируемого корабля "Союз ТМА-15" возникли проблемы с регулированием температуры , которые были устранены с помощью системы терморегулирования. На самочувствие экипажа инцидент не повлиял. 29 мая 2009 года корабль произвел стыковку с МКС.

14 августа 1997 года при посадке "Союза ТМ-25" с экипажем ЭО-23 (Василий Циблиев и Александр Лазуткин) преждевременно, на высоте 5.8 км, сработали двигатели мягкой посадки . По этой причине посадка СА была жесткой (скорость приземления составила 7.5 м/с), но космонавты не пострадали.

14 января 1994 года после расстыковки "Союза ТМ-17" с экипажем ЭО-14 (Василий Циблиев и Александр Серебров) во время облета комплекса "Мир" произошло нерасчетное сближение и столкновение корабля со станцией. ЧП обошлось без серьезных последствий.

20 апреля 1983 года с 1-й площадки космодрома Байконур стартовал космический корабль "Союз Т-8" с космонавтами Владимиром Титовым, Геннадием Стрекаловым и Александром Серебровым на борту. Для командира корабля Титова это была первая командировка на орбиту. Экипажу предстояло несколько месяцев проработать на борту станции "Салют-7", провести множество исследований и экспериментов. Однако космонавтов поджидала неудача. Из-за нераскрытия на корабле антенны системы сближения и стыковки "Игла" экипажу не удалось пристыковать корабль к станции, и 22 апреля "Союз Т-8" совершил посадку на Землю.

10 апреля 1979 года стартовал КК "Союз-33" с экипажем в составе Николая Рукавишникова и болгарина Георгия Иванова. При сближении со станцией отказал основной двигатель корабля. Причиной аварии стал газогенератор, питающий турбонасосный агрегат. Он взорвался повредив резервный двигатель. При выдаче (12 апреля) тормозного импульса резервный двигатель работал с недобором тяги, и импульс был выдан не полностью. Однако СА благополучно осуществил посадку, хотя и со значительным перелетом.

9 октября 1977 года был произведен запуск КК "Союз-25", пилотируемого космонавтами Владимиром Ковалёнком и Валерием Рюминым. Программа полета предусматривала стыковку с ДОС "Салют-6", которая была выведена на орбиту 29 сентября 1977 года. Из-за возникшей нештатной ситуации, стыковку со станцией с первого раза выполнить не удалось. Вторая попытка тоже была неудачной. И после третьей попытки корабль, коснувшись станции и оттолкнувшись пружинными толкателями, отошел на 8-10 м и завис. Топливо в основной системе кончилось полностью, и отойти подальше с помощью двигателей было уже невозможно. Возникла вероятность столкновения корабля и станции, однако через несколько витков они разошлись на безопасное расстояние. Топливо для выдачи тормозного импульса впервые взято из резервного бака. Истинную причину неудачи стыковки установить так и не удалось. Вероятнее всего, имел место дефект стыковочного узла "Союза-25" (исправность стыковочного узла станции подтверждается последующими стыковками с КК "Союз"), но он сгорел в атмосфере.

15 октября 1976 года в ходе полета КК "Союз-23" с экипажем в составе Вячеслава Зудова и Валерия Рождественского была предпринята попытка стыковки с ДОС "Салют-5". Из-за нерасчетного режима работы системы управления сближением стыковка была отменена и принято решение о досрочном возвращении космонавтов на Землю. 16 октября СА корабля приводнился на поверхность озера Тенгиз, покрытую кусками льда при окружающей температуре —20 градусов по Цельсию. Соленая вода попала на контакты внешних разъемов, часть которых оставалась под напряжением. Это привело к образованию ложных цепей и прохождению команды на отстрел крышки контейнера запасной парашютной системы . Парашют вышел из отсека, намок и перевернул корабль. Выходной люк оказался в воде, и космонавты чуть не погибли. Их спасли пилоты поискового вертолета, которые в трудных метеоусловиях смогли обнаружить СА и, зацепив его тросом, волоком дотащить до берега.

5 апреля 1975 года был произведен запуск корабля "Союз" (7К-Т №39) с космонавтами Василием Лазаревым и Олегом Макаровым на борту. Программой полета предусматривалась стыковка с ДОС "Салют-4" и работа на ее борту в течение 30 суток. Однако из-за аварии во время включения третьей ступени ракеты корабль на орбиту не вышел. "Союз" совершил суборбитальный полет, приземлившись на горном склоне в безлюдном районе Алтая невдалеке от государственной границы с Китаем и Монголией. Утром 6 апреля 1975 года Лазарев и Макаров были эвакуированы с места посадки на вертолете.

30 июня 1971 года во время возвращения на Землю экипажа космического корабля "Союз 11" из-за преждевременного раскрытия клапана дыхательной вентиляции произошла разгерметизация спускаемого аппарата , что привело к резкому понижению давления в модуле экипажа. В результате аварии все находившиеся на борту космонавты погибли. Экипаж корабля, стартовавшего с космодрома Байконур, состоял из трех человек: командир корабля Георгий Добровольский, инженер исследователь Виктор Пацаев и бортинженер Владислав Волков. Во время полета был установлен новый на тот момент рекорд, продолжительность нахождения экипажа в космосе составила свыше 23 суток.

19 апреля 1971 года на орбиту была выведена первая орбитальная станция "Салют", а 23 апреля 1971 года к ней стартовал ТПК "Союз-10" с первой экспедицией в составе Владимира Шаталова, Алексея Елисеева и Николая Рукавишникова. Эта экспедиция должна была работать на орбитальной станции "Салют" в течение 22-24 суток. ТПК "Союз-10" состыковался к орбитальной станции "Салют", но из-за повреждения стыковочного агрегата пилотируемого корабля во время стыковки, космонавты не смогли перейти на борт станции и возвратились на Землю.

23 апреля 1967 года при возвращении на Землю произошел отказ парашютной системы корабля "Союз-1" , в результате чего погиб космонавт Владимир Комаров. Программой полета планировалась стыковка КК "Союз-1" с КК "Союз-2" и переход из корабля в корабль через открытый космос Алексея Елисеева и Евгения Хрунова, но из-за нераскрытия одной из панелей солнечных батарей на "Союз-1" запуск "Союз-2" был отменен. "Союз-1" совершил досрочную посадку, но на конечном этапе спуска корабля на Землю отказала парашютная система и спускаемый аппарат разбился восточнее города Орск Оренбургской области, космонавт погиб.

Материал подготовлен на основе информации РИА Новости и открытых источников


15 июля исполнилось 40 лет миссии "Союз-Аполлон", историческому полету, который часто считают окончанием космической гонки. Впервые два корабля, построенные на противоположных полушариях, встретились и состыковались в космосе. "Союз" и "Аполлон" были уже третьим поколением космических аппаратов. К этому моменту конструкторские коллективы уже "набили шишки" на первых экспериментах, и новые корабли должны были находиться в космосе долго и выполнять новые сложные задачи. Думаю, будет интересно посмотреть, к каким техническим решениям пришли коллективы конструкторов.

Введение

Любопытно, но в изначальных планах и "Союзы" и "Аполлоны" должны были стать аппаратами второго поколения. Но в США достаточно быстро осознали, что между последним полетом "Меркурия" и первым полетом "Аполлона" пройдет несколько лет, и для того, чтобы это время не пропало зря, была запущена программа "Джемини". А СССР ответил на "Джемини" своими "Восходами" .

Также, для обоих аппаратов главной целью была Луна. США не жалели денег на лунную гонку, потому что до 1966 года СССР имел приоритет во всех значимых космических достижениях. Первый спутник, первые лунные станции, первый человек на орбите и первый человек в открытом космосе - все эти достижения были советскими. Американцы изо всех сил стремились "догнать и перегнать" Советский Союз. А в СССР задача пилотируемой лунной программы на фоне космических побед затмевалась другими насущными задачами, например, надо было догонять США по количеству баллистических ракет. Пилотируемые лунные программы - это отдельный большой разговор, а здесь мы поговорим про аппараты в орбитальной конфигурации, такой, в какой они встретились на орбите 17 июля 1975 года. Также, поскольку корабль "Союз" летает много лет и претерпел множество модификаций, говоря о "Союзе", мы будем иметь в виду версии близкие по времени к полету "Союз-Аполлона".

Средства выведения

Ракета-носитель, про которую обычно редко вспоминают, выводит космический корабль на орбиту и определяет многие его параметры, главными из которых будут максимальный вес и максимальный возможный диаметр.

В СССР для вывода нового корабля на околоземную орбиту решили использовать новую модификацию ракеты семейства "Р-7". На РН "Восход" заменили двигатель третьей ступени на более мощный, что увеличило грузоподъемность с 6 до 7 тонн. Корабль не мог иметь диаметр больше 3 метров, потому что в 60-х годах аналоговые системы управления не могли стабилизировать надкалиберные обтекатели.


Слева схема РН "Союз", справа - старт корабля "Союз-19" миссии "Союз-Аполлон"

В США для орбитальных полетов использовалась специально разработанная для "Аполлонов" РН "Saturn-I" В модификации -I она могла вывести на орбиту 18 тонн, а в модификации -IB - 21 тонну. Диаметр "Сатурна" превышал 6 метров, поэтому ограничения на размер космического корабля были минимальными.


Слева Saturn-IB в разрезе, справа - старт корабля "Apollo" миссии "Союз-Аполлон"

По размерам и весу "Союз" легче, тоньше и меньше "Аполлона". "Союз" весил 6,5-6,8 т. и имел максимальный диаметр 2,72 м. "Аполлон" имел максимальную массу 28 т (в лунном варианте, для околоземных миссий топливные баки были не полностью залиты) и максимальный диаметр 3,9 м.

Внешний вид


"Союз" и "Аполлон" реализовывали ставшую уже стандартной схему деления корабля на отсеки. Оба корабля имели приборно-агрегатный отсек (в США он называется сервисным модулем), спускаемый аппарат (командный модуль). Спускаемый аппарат "Союза" получился очень тесным, поэтому на корабль был добавлен бытовой отсек, который также мог использоваться как шлюзовая камера для выхода в открытый космос. В миссии "Союз-Аполлон" американский корабль также имел третий модуль, специальную шлюзовую камеру для перехода между кораблями.

"Союз" по советской традиции запускался целиком под обтекателем. Это позволяло не заботиться об аэродинамике корабля на выведении и располагать на наружной поверхности хрупкие антенны, датчики, солнечные батареи и прочие элементы. Также, бытовой отсек и спускаемый аппарат покрыты слоем космической теплоизоляции. "Аполлоны" продолжали американскую традицию - аппарат на выведении был закрыт лишь частично, носовую часть прикрывала баллистическая крышка, выполненная конструктивно вместе с системой спасения, а с хвостовой части корабль был закрыт переходником-обтекателем.


"Союз-19" в полете, съемка с борта "Аполлона". Темно-зеленое покрытие - теплоизоляция


"Аполлон", съемка с борта "Союза". На маршевом двигателе, похоже, местами вспучилась краска


"Союз" более поздней модификации в разрезе


"Аполлон" в разрезе

Форма спускаемого аппарата и теплозащита



Спуск корабля "Союз" в атмосфере, вид с земли

Спускаемые аппараты "Союза" и "Аполлона" похожи друг на друга больше, чем это было в предыдущих поколениях космических кораблей. В СССР конструкторы отказались от сферического спускаемого аппарата - при возвращении с Луны он потребовал бы очень узкого коридора входа (максимальная и минимальная высота, между которыми нужно попасть для успешной посадки), создал бы перегрузку свыше 12 g, а район посадки измерялся бы десятками, если не сотнями, километров. Конический спускаемый аппарат создавал подъемную силу при торможении в атмосфере и, поворачиваясь, менял ее направление, управляя полетом. При возвращении с земной орбиты перегрузка снижалась с 9 до 3-5 g, а при возвращении с Луны - с 12 до 7-8 g. Управляемый спуск серьезно расширял коридор входа, повышая надежность посадки, и очень серьезно уменьшал размеры района посадки, облегчая поиск и эвакуацию космонавтов.


Расчет несимметричного обтекания конуса при торможении в атмосфере


Спускаемые аппараты "Союза" и "Аполлона"

Диаметр 4 м, выбранный для "Аполлона", позволил сделать конус с углом полураствора 33°. Такой спускаемый аппарат имеет аэродинамическое качество порядка 0,45, а его боковые стенки практически не нагреваются при торможении. Но его недостатком были две точки устойчивого равновесия - "Аполлон" должен был входить в атмосферу ориентированным дном по направлению полета, потому что в случае входа в атмосферу боком, он мог перевернуться в положение "носом вперед" и погубить астронавтов. Диаметр 2,7 м для "Союза" делал такой конус нерациональным - слишком много места пропадало впустую. Поэтому был создан спускаемый аппарат типа "фара" с углом полураствора всего 7°. Он эффективно использует пространство, имеет только одну точку устойчивого равновесия, но его аэродинамическое качество ниже, порядка 0,3, а для боковых стенок требуется теплозащита.

В качестве теплозащитного покрытия использовались уже освоенные материалы. В СССР применяли фенол-формальдегидные смолы на тканевой основе, а в США - эпоксидную смолу на матрице из стеклопластика. Механизм работы был одинаковый - теплозащита обгорала и разрушалась, создавая дополнительный слой между кораблем и атмосферой, а сгоревшие частицы принимали на себя и уносили тепловую энергию.


Материал теплозащиты "Аполлона" до и после полета

Двигательная система

И "Аполлоны" и "Союзы" имели маршевые двигатели для коррекции орбиты и двигатели ориентации для изменения положения корабля в пространстве и выполнения точных маневров по стыковке. На "Союзе" система орбитального маневрирования была установлена впервые для советских космических кораблей. По каким-то причинам конструкторы выбрали не очень удачную компоновку, когда маршевый двигатель работал от одного топлива (НДМГ+АТ), а двигатели причаливания и ориентации - от другого (перекись водорода). В сочетании с тем, что на "Союзе" баки вмещали 500 кг топлива, а на "Аполлоне" 18 тонн, это привело к разнице запаса характеристической скорости на порядок - "Аполлон" мог изменить свою скорость на 2800 м/с, а "Союз" только на 215 м/с. Больший запас характеристической скорости даже недозаправленного "Аполлона" делал его очевидным кандидатом на активную роль при сближении и стыковке.


Корма "Союза-19", хорошо видны сопла двигателей


Двигатели ориентации "Аполлона" крупным планом

Система посадки

Системы посадки развивали наработки и традиции соответствующих стран. США продолжали сажать корабли на воду. После экспериментов с системами посадки "Меркуриев" и "Джемини" был выбран простой и надежный вариант - на корабле стояли два тормозных и три основных парашюта. Основные парашюты были резервированы, и безопасная посадка обеспечивалась при отказе одного из них. Такой отказ произошел при посадке "Аполлона-15", и ничего страшного не случилось. Резервирование парашютов позволило отказаться от индивидуальных парашютов астронавтов "Меркурия" и катапультных кресел "Джемини".


Схема посадки "Аполлона"

В СССР традиционно сажали корабль на сушу. Идеологически система посадки развивает парашютно-реактивную посадку "Восходов". После сброса крышки парашютного контейнера срабатывают последовательно вытяжной, тормозной и основной парашюты (на случай отказа системы установлен запасной). Корабль спускается на одном парашюте, на высоте 5,8 км сбрасывается теплозащитный экран, а на высоте ~1 м срабатывают реактивные двигатели мягкой посадки (ДМП). Система получилась интересная - работа ДМП создает эффектные кадры, но комфортность посадки изменяется в очень широком диапазоне. Если космонавтам везет, то удар о землю практически неощутим. Если нет, то корабль может чувствительно удариться о землю, а если совсем не повезет, то еще и опрокинется на бок.


Схема посадки


Совершенно нормальная работа ДМП


Дно спускаемого аппарата. Три круга сверху - ДМП, еще три - с противоположной стороны

Система аварийного спасения

Любопытно, но, идя разными путями, СССР и США пришли к одинаковой системе спасения. В случае аварии специальный твердотопливный двигатель, стоявший на самом верху ракеты-носителя, отрывал спускаемый аппарат с космонавтами и уносил его в сторону. Посадка производилась штатными средствами спускаемого аппарата. Такая система спасения оказалась самой хорошей из всех использованных вариантов - она простая, надежная и обеспечивает спасение космонавтов на всех этапах выведения. В реальной аварии она применялась один раз и спасла жизни Владимира Титова и Геннадия Стрекалова, унеся спускаемый аппарат от горящей в стартовом сооружении ракеты.


Слева направо САС "Аполлона", САС "Союза", различные версии САС "Союза"

Система терморегуляции

В обоих кораблях использовалась система терморегуляции с теплоносителем и радиаторами. Покрашенные в белый цвет для лучшего излучения тепла радиаторы стояли на сервисных модулях и даже выглядели одинаково:

Средства обеспечения ВКД

И "Аполлоны" и "Союзы" проектировали с учетом возможной необходимости внекорабельной деятельности (выхода в открытый космос). Конструкторские решения также были традиционными для стран - США разгерметизировали весь командный модуль и выходили наружу через стандартный люк, а СССР использовал бытовой отсек в качестве шлюзовой камеры.


ВКД "Аполлона-9"

Система стыковки

И "Союз" и "Аполлон" использовали стыковочное устройство типа "штырь-конус". Поскольку при стыковке активно маневрировал корабль, и на "Союзе" и на "Аполлоне" были установлены штыри. А для программы "Союз-Аполлон", чтобы никому не было обидно, разработали универсальный андрогинный стыковочный агрегат. Андрогинность означала, что могли состыковаться любые два корабля с такими узлами (а не только парные, один со штырем, другой с конусом).


Стыковочный механизм "Аполлона". Он, кстати, использовался и в программе "Союз-Аполлон", с его помощью командный модуль стыковался со шлюзовой камерой


Схема стыковочного механизма "Союза", первая версия


"Союз-19", вид спереди. Хорошо виден стыковочный узел

Кабина и оборудование

По составу оборудования "Аполлон" заметно превосходил "Союз". Прежде всего, в состав оборудования "Аполлона" конструкторы сумели добавить полноценную гиростабилизированную платформу, которая с высокой точностью хранила данные о положении и скорости корабля. Далее, командный модуль имел мощный и гибкий для своего времени компьютер, который при необходимости можно было бы перепрограммировать прямо в полете (и такие случаи известны). Интересной особенностью "Аполлона" было также отдельное рабочее место для астронавигации. Оно использовалось только в космосе и было расположено под ногами астронавтов.


Панель управления, вид с левого кресла


Панель управления. Слева расположены органы управления полетом, по центру - двигателями ориентации, сверху аварийные индикаторы, снизу связь. В правой части индикаторы топлива, водорода и кислорода и управление электропитанием

Несмотря на то, что оборудование "Союза" было проще, оно было самым продвинутым для советских кораблей. На корабле впервые появился бортовой цифровой компьютер, а в состав систем корабля входило оборудование для автоматической стыковки. Впервые в космосе использовались многофункциональные индикаторы на электронно-лучевой трубке.


Панель управления кораблей "Союз"

Система электропитания

"Аполлоны" использовали очень удобную для полетов длительностью 2-3 недели систему - топливные элементы. Водород и кислород, соединяясь, вырабатывали энергию, а полученная вода использовалась экипажем. На "Союзах" в разных версиях стояли разные источники энергии. Были варианты с топливными элементами, а для полета "Союз-Аполлон" на корабле установили солнечные батареи.

Заключение

И "Союзы" и "Аполлоны" оказались по-своему очень удачными кораблями. "Аполлоны" успешно слетали к Луне и станции "Скайлэб". А "Союзы" получили крайне долгую и успешную жизнь, став основным кораблем для полетов к орбитальным станциям, с 2011 года они возят на МКС и американских астронавтов, и будут возить их, как минимум, до 2018 года.

Но за этот успех была заплачена очень дорогая цена. И "Союз" и "Аполлон" стали первыми кораблями, в которых погибли люди. Что еще печальнее, если бы конструкторы, инженеры и рабочие меньше спешили и после первых успехов не перестали бы бояться космоса, то Комаров, Добровольский, Волков, Пацаев, Гриссом, Уайт и Чеффи

Неудачи стыковки со станцией: «Союз-10 », «Союз-15 », «Союз-23 », «Союз-25 », «Союз Т-8 ».

Взрыв двигателя до стыковки «Союз-33 ».

Беспилотных полётов Пилотируемых запусков

Корабли «Союз» совершили более 130 успешных пилотируемых полётов (см. список аппаратов) и стали ключевым компонентом советской и российской пилотируемых программ освоения космоса. После завершения полётов Space Shuttle в 2011 году «Союзы» остались единственным средством доставки экипажей на Международную космическую станцию .

История создания

ТАСС-ДОСЬЕ. На 28 июля 2017 г. в 18:41 мск запланирован запуск с космодрома Байконур ракеты-носителя "Союз-ФГ" с пилотируемым кораблем "Союз МС-05".

На Международную космическую станцию (МКС) отправится экспедиция МКС-52/53 . В основной состав экипажа входят российский космонавт Сергей Рязанский, американский астронавт Рэндольф Брезник и астронавт Европейского космического агентства (ЕКА), представитель Италии Паоло Несполи.

Корабль

"Союз МС" ("МС" - "модернизированные системы") - российский пилотируемый космический корабль. Входит в семейство кораблей "Союз" (первый запуск - в 1966 г., первый пилотируемый - в 1967 г.).

Предназначен для доставки экипажей на МКС (до 2011 г. эту функцию также осуществляли американские многоразовые корабли типа Space Shuttle) и обратно на Землю. Выполняет роль корабля-спасателя в случаях вынужденной или аварийной эвакуации экипажа (при возникновении опасной ситуации на станции, заболевания или травмы космонавтов). Кроме того, используется для доставки на станцию и возвращения на Землю небольших грузов (научно-исследовательской аппаратуры, личных вещей космонавтов, результатов экспериментов и др.), удаления отходов с МКС в бытовом отсеке.

Головной разработчик и производитель - Ракетно-космическая корпорация "Энергия" им. С. П. Королёва (РКК "Энергия"; город Королёв, Московская обл.). Эскизный проект корабля, разработанный по заданию Федерального космического агентства (ныне - госкорпорация "Роскосмос"), был одобрен на заседании научно-технического совета РКК "Энергия" в августе 2011 г. "Союз МС", как и предыдущая модификация ("Союз ТМА-М"), создан на базе серии "Союз ТМА" (эксплуатировалась в 2002-2011 гг.) путем глубокой модернизации.

Характеристики

Внешняя конфигурация "Союза МС" полностью соответствует кораблям двух предыдущих серий. Он состоит из трех отсеков: приборно-агрегатного, бытового и спускаемого аппарата. Длина - 6,98 м, максимальный диаметр - 2,72 м, диаметр жилых отсеков - 2,2 м.

Стартовая масса корабля - 7,22 т, масса спускаемого аппарата - около 2,9 т, масса полезного груза - до 100 кг (при экипаже из трех человек). "Союз МС" рассчитан на экипаж до трех человек (при росте космонавта 150-190 см и весе 50-95 кг). Полетный ресурс - 200 суток.

Стыковка с МКС может осуществляться как в автоматическом, так и в ручном режиме управления (командиром корабля).

Модернизация

В "Союзе МС" были обновлены почти все внутренние системы.

  • Усовершенствована система управления движением и навигацией, которая обеспечивает связь с космонавтами на всем этапе полета. Благодаря ей обнаружение спускаемого аппарата занимает меньше времени.
  • Бортовая командная радиотехническая система "Квант-В" заменена на единую командно-телеметрическую систему ЕКТС-ТКА (впервые была установлена на грузовой корабль "Прогресс МС-01", который был запущен в декабре 2015 г.). Новая командная радиолиния обеспечивает прием сигналов через спутники-ретрансляторы "Луч-5" (в декабре 2015 г. система "Луч" в составе трех спутников была принята в эксплуатацию). Это позволяет поддерживать связь с кораблем почти в любой точке орбиты, а не только над территорией России, где расположены наземные станции связи.
  • Вместо аппаратуры радиоконтроля орбиты применяется система автономной спутниковой навигации (АСН), которая позволяет определять параметры движения корабля по сигналам от спутников навигационных систем ГЛОНАСС и GPS и тем самым упрощает задачу точного определения координат и скорости корабля на орбите (без привлечения дополнительных наземных средств). АСН позволяет определять параметры орбиты корабля с точностью до 5 м, координаты при сближении корабля со станцией - до одного метра (в перспективе - до 3-4 см).
  • Модернизирована система стыковки и сближения со станцией. Научно-исследовательский институт точных приборов (Москва) заменил свою же систему "Курс-А" на "Курс-НА" (НА - "новая активная"). В системе "Курс-НА" используются современные методы цифровой обработки сигналов. Кроме того, она вдвое легче и в три раза экономичнее по энергопотреблению аппаратуры предыдущего поколения. Для надежности в состав стыковочного механизма введены дублирующие электродвигатели.
  • Вместо аналоговой телевизионной системы "Клёст" на "Союзе МС" применяется цифровая телевизионная система (поддерживает связь между кораблем и станцией посредством межбортовой радиолинии).
  • На спускаемом аппарате корабля используемая ранее система запоминания информации (СЗИ) заменена на многоразовый "черный ящик". Модернизированная система СЗИ-М разработана Научно-производственным объединением измерительной техники (Королёв, Московская обл.; входит в структуру компании "Российские космические системы"). Этот небольшой прибор располагается под креслом пилота, может использоваться для полетов до 10 раз и имеет ударотеплозащитный корпус: способен выдержать удар о землю со скоростью до 540 км/ч и температуру до 700 градусов Цельсия в течение 30 мин. С его помощью во время полета записывается техническая информация, физиологические параметры космонавтов и аудиоинформация.
  • Повышена эффективность солнечных батарей путем увеличения их площади и мощности фотоэлементов. "Союз МС" получил дополнительную защиту от космического мусора и микрометеоритов.

Запуски

Запуски "Союза МС" проводятся с космодрома Байконур (арендуется Россией у Казахстана) с помощью ракеты-носителя "Союз-ФГ" самарского Ракетно-космического центра "Прогресс". В первых полетах корабля для отработки установленных на нем новых систем использовалась двухсуточная 34-витковая схема сближения с МКС вместо укороченной шестичасовой (начала применяться для пилотируемых кораблей типа "Союз" с марта 2013 г.), когда корабль делает всего четыре витка вокруг Земли.

Впервые "Союз МС" был выведен на околоземную орбиту 7 июля 2016 г. Через двое суток, 9 июля, корабль доставил на станцию трех членов экспедиции МКС-48/49. После расстыковки с МКС 30 октября того же года спускаемый аппарат корабля вернул экипаж на Землю.
Запуск второго корабля с экипажем МКС-49/50 был осуществлен 19 октября 2016 г. "Союз МС-02" находился в составе станции с 21 октября 2017 г. по 10 апреля 2017 г.

17 ноября 2016 г. был выведен в космос "Союз МС-03" с членами экспедиции МКС-50/51. Корабль пристыковался к МКС 20 ноября и входил в состав станции до 2 июня 2017 г.

"Союз МС-04" стартовал 20 апреля 2017 г. В тот же день корабль пристыковался к МКС, доставив на борт станции экипаж экспедиции МКС-51/52. В настоящее время "Союз МС-04" находится в составе станции. Всего к 27 июля 2017 г. осуществлено четыре запуска пилотируемого корабля - все успешные.

Перспектива

Впоследствии на основе технических решений "Союза МС" РКК "Энергия" планирует создать многоразовый пилотируемый транспортный корабль, получивший название "Федерация". В августе 2015 г. корпус его возвращаемого аппарата впервые демонстрировался широкой публике на авиасалоне МАКС в Жуковском (Московская обл.).

Согласно планам госкорпорации "Роскосмос", первый запуск "Федерации" в беспилотном варианте может состояться в 2022 г. с Байконура (ранее планировался на 2021 г. с космодрома Восточный).

В 1960 году, на заре практического освоения космического пространства, в ОКБ под руководством Сергея Павловича Королёва были сформулированы предложения по созданию средств для орбитальной сборки. Подчеркивалось, в частности, что одна из важнейших задач сближение и сборка космических аппаратов на орбитах искусственных спутников Земли. Отмечалось, что обслуживание постоянно действующих пилотируемых спутников (смена экипажа, доставка продовольствия, специального снаряжения и др.) связано с регулярными сближениями и стыковками на орбите, наработанный в этом деле опыт позволит в случае необходимости успешно осуществлять спасение экипажей пилотируемых спутников и космических кораблей.

Корабли «Восток» и «Восход» выполняли ограниченный круг научно-технических задач, главным образом экспериментально-исследовательских. Новые космические корабли серии «Союз» были предназначены для относительно длительных полетов, маневрирования, сближения и стыковки на околоземных орбитах.

10 марта 1962 года Королёв утверждает технический проспект, озаглавленный «Комплекс сборки космических аппаратов на орбите спутника Земли (тема "Союз")». В этом документе впервые дается обоснование возможности использования модификации космического корабля «Восток-7» с космонавтом-«монтажником» на борту для отработки стыковки и сборки на орбите. Для этого корабль предполагалось снабдить системами сближения и стыковки, а также маршевой ДУ многократного включения и системой микродвигателей причаливания и ориентации. «Восток-7» мог быть использован для сборки на орбите искусственного спутника Земли космической ракеты, состоящей из трех одинаковых ракетных блоков. С помощью такой космической ракеты предлагалось выполнить облет Луны специальным кораблем Л1 с экипажем из одного-трех человек.

Через некоторое время появился второй проспект, озаглавленный «Сборка космических аппаратов на орбите спутника Земли», утвержденный СП. Королёвым 10 мая 1963 года. В нем тема «Союз» звучит уже четко и убедительно. Основной объект документа - комплекс, состоящий из последовательно выводимых и стыкующихся на орбите разгонных блоков кораблей-танкеров для его заправки и «Союз».

В проспекте ставились две основные задачи: отработать стыковку и сборку на орбите и облететь Луну пилотируемым аппаратом. По мнению Королёва, увязка решений по двум этим задачам обеспечивала приоритет СССР в освоении космоса.

В связи с разработкой варианта прямого облета Луны кораблем Л1 программа «Союз» была нацелена на отработку сближения и стыковки космического корабля с последующим переходом членов экипажа из корабля в корабль. Эскизный проект «Союза», подписанный в 1965 году, отражал уже новые тактико-технические требования к кораблю. Отработка «Союза» в беспилотной варианте была начата 28 ноября 1966 года запуском спутника «Космос-133». После неудачной попытки запуска беспилотного «Союза» в декабре 1966 года, окончившейся аварией ракеты-носителя и срабатыванием системы аварийного спасения на старте, 7 февраля 1967 года орбитальный полет с посадкой в Аральское море совершил второй беспилотный «Союз» («Космос-140»).

Первый пилотируемый полет на «Союзе-1» совершил 23-24 апреля 1967 года летчик-космонавт В.М. Комаров, однако из-за отказа парашютных систем при спуске полет окончился катастрофой.

Первая автоматическая стыковка была выполнена 30 сентября 1967 года беспилотными кораблями-спутниками «Космос-186 и -187» и повторена 15 апреля 1968 года кораблями-спутниками «Космос-212» и «Космос-213». После беспилотного полета корабля «Союз» (спутник «Космос-238»), запущенного 28 августа 1968 года, начались регулярные полеты «Союзов».

Фактически задача программы «Союз» - стыковка пилотируемых космических кораблей с переходом космонавтов через космос — была выполнена 16 января 1969 года в ходе полета кораблей «Союз-4 и -5» с космонавтами В.А. Шаталовым, Б.В. Волыновым, А.С. Елисеевым и Е.В. Хруновым. Оставшиеся корабли «Союз» были перенацелены на выполнение технологических экспериментов в групповом полете и длительном полете.

В октябре 1969 года по программе «Союз» состоялся групповой полет трех космических кораблей - «Союз-6», «Союз-7» и «Союз-8» с семью космонавтами на борту. Уже сам факт запуска с одного космодрома с минимальными интервалами трех космических кораблей подряд представлял собой значительное техническое достижение. Большое значение имел полученный в этом эксперименте опыт управления групповым полетом. Слаженно действовала целая система, состоявшая из трех космических кораблей, наземного командно-измерительного комплекса, группы научно-исследовательских судов и спутника связи «Молния-1».

На борту «Союза-6» был проведен уникальный эксперимент - сварка в условиях космоса. Она производилась на специально сконструированной сварочной установке «Вулкан». Сварочный узел «Вулкана» был смонтирован в орбитальном отсеке, а пульт дистанционного управления находился в кабине корабля.

Орбитальный отсек был разгерметизирован, и сварка была выполнена тремя способами: сжатой дугой, электронным лучом и плавящимся электродом. В ходе эксперимента проводились сварка тонколистовой нержавеющей стали и титана, резка нержавеющей стали, титана и алюминия, обработка неметаллических материалов. Затем орбитальный отсек был вновь загерметизирован, космонавты демонтировали установку, перенесли образцы в спускаемый аппарат и впоследствии доставили их на Землю. Успешный эксперимент открыл перспективы для строительных и монтажных работ в космосе.

1 июня 1970 года стартовал новый «Союз» - девятый. Этот полет дал неоценимый материал для дальнейшего развития космонавтики. Особенно ценными были медико-биологические исследования влияния факторов длительного космического полета на организм человека.

Командир корабля А.Г. Николаев, совершивший свой второй космический рейс, и бортинженер В. И. Севастьянов установили тогда мировой рекорд длительности космического полета. Они работали на околоземной орбите 424 часа. Программа полета была насыщена многими экспериментами по автономной навигации в космосе, научными исследованиями околоземного космического пространства.

Корабль «Союз» имеет внушительные размеры. Его длина около 8 метров, наибольший диаметр - около 3 метров, масса перед стартом составляет почти 7 тонн. Все отсеки корабля покрыты снаружи специальным теплоизолирующим «одеялом», защищающим конструкцию и оборудование от перегрева на Солнце и слишком сильного охлаждения в тени.

В корабле три отсека: орбитальный, приборно-агрегатный и спускаемый аппарат. Орбитальный отсек по форме представляет собой две полусферы, соединенные цилиндрической вставкой. На наружной поверхности орбитального отсека установлены большие и малые антенны радиосистем корабля, телекамеры и другое оборудование.

В орбитальном отсеке космонавты работают и отдыхают во время полета по орбите. Здесь размещаются научная аппаратура, спальные места экипажа, различные бытовые устройства. На верхней полусфере отсека шпангоут, на котором установлен стыковочный агрегат, и люк для перехода в корабль, с которым стыкуется «Союз».

Круглый люк соединяет орбитальный отсек со спускаемым аппаратом. «Спускаемый аппарат имеет сегментально-коническую форму, напоминает фару, пишет в своей книге Л. А. Гильберг. - Такая форма при определенном расположении центра тяжести придает аппарату аэродинамическое качество при полете в атмосфере возникает аэродинамическая подъемная сила, которая регулируется разворотом аппарата вокруг продольной оси. Это позволяет осуществить управляемый спуск - снизить перегрузки до 3-4 единиц и существенно повысить точность приземления.

На наружную поверхность спускаемого аппарата нанесено прочное теплозащитное покрытие; нижняя часть аппарата, которая рассекает воздух при спуске и сильнее всего подвержена аэродинамическому нагреву, закрыта особым теплозащитным экраном, который сбрасывается после раскрытия парашюта, чтобы облегчить кабину космонавтов перед приземлением. При этом открываются прикрытые экраном пороховые двигатели мягкой посадки, которые включаются перед самым соприкосновением с Землей и смягчают толчок при посадке.

Спускаемый аппарат имеет два иллюминатора с жаропрочными стеклами, люк, ведущий в орбитальный отсек. Снаружи находится оптический визир, который облегчает космонавтам ориентацию и позволяет наблюдать за другим кораблем при причаливании и стыковке. В нижней части по окружности спускаемого аппарата расположены шесть двигателей системы управления спуском, которые используются при возвращении корабля на Землю. Эти двигатели помогают удерживать спускаемый аппарат в положении, позволяющем использовать его аэродинамические качества.

В верхней части спускаемого аппарата находятся отсеки с основным и запасным парашютами».

Приборно-агрегатный отсек цилиндрической формы с небольшой конической «юбкой» пристыкован к спускаемому аппарату и предназначен для размещения большей части бортовой аппаратуры корабля и его двигательных установок.

Конструктивно отсек разделяется на три секции переходную, приборную и агрегатную. Приборная секция представляет собой герметический цилиндр. В нем находятся радиосвязная и радиотелеметрическая аппаратура, приборы системы ориентации и управления движением, некоторые агрегаты систем терморегулирования и электропитания. Две другие секции не загерметизированы.

В приборно-агрегатном отсеке размещена основная двигательная установка корабля, которая используется для маневрирования на орбите и торможения при спуске.

Она состоит из двух мощных жидкостных ракетных двигателей. Один из них — основной, другой - резервный. С помощью этих двигателей корабль может перейти на другую орбиту, сблизиться с орбитальной станцией или отойти от нее, замедлить движение для перехода на траекторию спуска. После торможения на орбите отсеки корабля отделяются друг от друга. Орбитальный и приборно-агрегатный отсеки сгорают в атмосфере, а спускаемый аппарат приземляется в заданном районе посадки. Когда до Земли остается 9-10 километров, срабатывает парашютная система. Сначала раскрывается тормозной парашют, а затем - основной. На нем аппарат совершает плавный спуск. Непосредственно перед приземлением на высоте одного метра включаются двигатели мягкой посадки.

Система двигателей малой тяги состоит из 14 двигателей причаливания и ориентации и из 8 двигателей для точной ориентации. В приборно-агрегатном отсеке находятся также гидроагрегаты системы терморегулирования, баки с топливом, шаровые баллоны системы наддува исполнительных органов, аккумуляторы системы электропитания. Источником электроэнергии служат также солнечные батареи. Две панели этих батарей полезной площадью около 9 квадратных метров закреплены снаружи на приборно-агрегатном отсеке. На кромках батарей - бортовые огни красного, зеленого и белого цветов, которые помогают ориентироваться при причаливании и стыковке кораблей.

Снаружи установлен и ребристый радиатор-излучатель системы терморегулирования, который позволяет отвести в космос избыточное тепло корабля. На приборно-агрегатном отсеке много антенн - радиотелефонной связи корабля с Землей на коротких и ультракоротких волнах, радиотелеметрической системы, траекторных измерений и датчиков системы ориентации и управления движением.

Опыт применения корабля «Союз» и станций «Салют» показал, что необходимо совершенствовать орбитальные комплексы не только для увеличения длительности работы станций, расширения программ и сферы исследований, но и для увеличения возможностей транспортного корабля, повышения безопасности экипажа, улучшения эксплуатационных характеристик.

Для решения этих задач на базе «Союза» был создан новый корабль - «Союз Т». Оригинальные конструкторские решения позволили увеличить численность экипажа до трех человек. Корабль оснастили новыми бортовыми системами, в том числе вычислительным комплексом, объединенной двигательной установкой, солнечными батареями, системой жизнеобеспечения для автономного полета.

Особое внимание конструкторы уделили высокой надежности и безопасности полета. Корабль позволял вести управление в автоматическом и ручном режимах, включая участок спуска, даже в такой тяжелой расчетной нештатной ситуации, как разгерметизация на орбите спускаемого аппарата. Длительность полета «Союза Т» в составе станции была доведена до 180 суток.

Все эти новые технические решения в полной мере оправдали себя во время полета космонавтов В. Джанибекова и В. Савиных к «Салюту-7», находившемуся в свободном дрейфе. После стыковки корабль своими ресурсами дал возможность экипажу провести восстановительный ремонт станции. Другим не менее ярким примером служит перелет космонавтов Л. Кизима и В. Соловьева со станции «Мир» на «Салют-7» и обратно с грузом массой до 400 килограммов.

Дальнейшее развитие космической программы с целью создания постоянно действующего орбитального комплекса потребовало усовершенствования корабля «Союз Т». Перед разработчиками стояла задача обеспечить совместимость корабля со станцией «Мир», повысить его энергетические возможности и усовершенствовать бортовые системы.

Как пишет И. Минюк в журнале «Авиация и космонавтика»: «Необходимость повышения энергетики космических транспортных средств обусловлена тем, что корабль "Союз Т" обеспечивал доставку экипажа из трех человек только на орбиту высотой порядка 300 километров. А ведь устойчивая орбита станции лежит выше 350 километров.

Выход был найден за счет снижения «сухой» массы корабля, применения для парашютных систем более легкого высокопрочного материала и новой двигательной установки системы аварийного спасения. Это позволило довести высоту- стыковки трехместного корабля "Союз ТМ" со станцией «Мир» до 350—400 километров и увеличить массу доставляемого груза.

Одновременно шло совершенствование его бортовых систем, в том числе радиосвязи для переговоров экипажа с Землей, измерителей угловых скоростей, двигательной установки с секционированным хранением запасов топлива, а также теплозащитной одежды космонавтов. Необходимо отметить, что "Союз ТМ" в составе орбитального комплекса может резервировать некоторые функции станции. Так, он в состоянии проводить необходимую ее ориентацию и подъем орбиты, осуществлять электропитание, а его система терморегулирования способна сбросить избыток тепла, образовавшегося на орбитальном комплексе».

На базе «Союза» создан еще один космический аппарат, обеспечивающий функционирование долговременных орбитальных станций, - это «Прогресс». Так назван
одноразовый автоматический грузовой транспортный космический корабль. Его масса после заправки и загрузки — немного более 7 тонн.

Автоматический грузовой космический корабль «Прогресс» предназначен для доставки на орбитальные станции «Салют» различных грузов и топлива для дозаправки двигательной установки станции.

Хотя он во многом напоминает «Союз», в его конструкции имеются и существенные отличия. Этот корабль тоже состоит из трех отсеков, но их назначение и. следовательно, конструкция иные. Грузовой корабль не должен возвращаться на Землю. Естественно, в его составе нет и спускаемого аппарата. После выполнения своей функции он отстыковывается от орбитальной станции, соответствующим образом ориентируется, включается тормозной двигатель, аппарат входит в плотные слои атмосферы над расчетным районом Тихого океана и прекращает существование.

Вместо спускаемого аппарата имеется отсек для перевозки топлива - горючего и окислителя, а орбитальный отсек в «Прогрессе» превратился в грузовой. В нем на орбиту доставляют запасы пищи и воды, научную аппаратуру, сменные блоки различных систем орбитальной станции. Весь этот груз весит более двух тонн.

Приборно-агрегатный отсек «Прогресса» похож на аналогичный отсек корабля «Союз». Но и в нем есть некоторые различия. Ведь «Прогресс» - корабль автоматический, и поэтому здесь все системы и агрегаты работают только самостоятельно или по командам с Земли.

Пилотируемые грузовые корабли постоянно совершенствуются. С 1987 года космонавты доставляются на орбитальные станции и возвращаются на Землю на модифицированном корабле «Союз ТМ». Модифицирован и грузовой «Прогресс».