Предел функции в точке коши. Универсальное определение предела функции по гейне и по коши

Приводятся определения предела функции по Гейне (через последовательности) и по Коши (через эпсилон и дельта окрестности). Определения даются в универсальном виде, применимом как для двусторонних, так и односторонних пределов в конечных и бесконечно удаленных точках. Рассмотрено определение, что точка a не является пределом функции. Доказательство эквивалентности определений по Гейне и по Коши.

Содержание

См. также: Окрестность точки
Определение предела функции в конечной точке
Определение предела функции на бесконечности

Первое определение предела функции (по Гейне)

(x) в точке x 0 :
,
если
1) существует такая проколотая окрестность точки x 0
2) для любой последовательности { x n } , сходящейся к x 0 :
, элементы которой принадлежат окрестности ,
последовательность { f(x n )} сходится к a :
.

Здесь x 0 и a могут быть как конечными числами, так и бесконечно удаленными точками. Окрестность может быть как двусторонней, так и односторонней.


.

Второе определение предела функции (по Коши)

Число a называется пределом функции f(x) в точке x 0 :
,
если
1) существует такая проколотая окрестность точки x 0 , на которой функция определена;
2) для любого положительного числа ε > 0 существует такое число δ ε > 0 , зависящее от ε , что для всех x , принадлежащих проколотой δ ε - окрестности точки x 0 :
,
значения функции f(x) принадлежат ε - окрестности точки a :
.

Точки x 0 и a могут быть как конечными числами, так и бесконечно удаленными точками. Окрестность также может быть как двусторонней, так и односторонней.

Запишем это определение с помощью логических символов существования и всеобщности:
.

В этом определении используются окрестности с равноудаленными концами. Можно дать и эквивалентное определение, используя произвольные окрестности точек.

Определение с использованием произвольных окрестностей
Число a называется пределом функции f(x) в точке x 0 :
,
если
1) существует такая проколотая окрестность точки x 0 , на которой функция определена;
2) для любой окрестности U(a) точки a существует такая проколотая окрестность точки x 0 , что для всех x , принадлежащих проколотой окрестности точки x 0 :
,
значения функции f(x) принадлежат окрестности U(a) точки a :
.

С помощью логических символов существования и всеобщности это определение можно записать так:
.

Односторонние и двусторонние пределы

Приведенные выше определения универсальны в том смысле, что их можно использовать для любых типов окрестностей. Если, в качестве мы используем левостороннюю проколотую окрестность конечной точки, то получим определение левостороннего предела . Если в качестве окрестности использовать окрестность бесконечно удаленной точки, то получим определение предела на бесконечности.

Для определения предела по Гейне это сводится к тому, что на произвольную, сходящуюся к , последовательность накладывается дополнительное ограничение - ее элементы должны принадлежать соответствующей проколотой окрестности точки .

Для определения предела по Коши нужно в каждом случае преобразовать выражения и в неравенства, используя соответствующие определения окрестности точки.
См. «Окрестность точки ».

Определение, что точка a не является пределом функции

Часто возникает необходимость использовать условие, что точка a не является пределом функции при . Построим отрицания к изложенным выше определениям. В них мы предполагаем, что функция f(x) определена на некоторой проколотой окрестности точки x 0 . Точки a и x 0 могут быть как конечными числами, так и бесконечно удаленными. Все сформулированное ниже относится как к двусторонним, так и к односторонним пределам.

По Гейне .
Число a не является пределом функции f(x) в точке x 0 : ,
если существует такая последовательность { x n } , сходящаяся к x 0 :
,
элементы которой принадлежат окрестности ,
что последовательность { f(x n )} не сходится к a :
.
.

По Коши .
Число a не является пределом функции f(x) в точке x 0 :
,
если существует такое положительное число ε > 0 , так что для любого положительного числа δ > 0 , существует такое x , принадлежащее проколотой δ - окрестности точки x 0 :
,
что значение функции f(x) не принадлежит ε - окрестности точки a :
.
.

Разумеется, если точка a не является пределом функции при , то это не означает, что у нее не может быть предела. Возможно, существует предел , но он не равен a . Также возможен случай, когда функция определена в проколотой окрестности точки , но не имеет предела при .

Функция f(x) = sin(1/x) не имеет предела при x → 0.

Например, функция определена при , но предела не существует. Для доказательства возьмем последовательность . Она сходится к точке 0 : . Поскольку , то .
Возьмем последовательность . Она также сходится к точке 0 : . Но поскольку , то .
Тогда предел не может равняться никакому числу a . Действительно, при , существует последовательность , с которой . Поэтому любое отличное от нуля число не является пределом. Но также не является пределом, поскольку существует последовательность , с которой .

Эквивалентность определений предела по Гейне и по Коши

Теорема
Определения предела функции по Гейне и по Коши эквивалентны.

Доказательство

При доказательстве мы предполагаем, что функция определена в некоторой проколотой окрестности точки (конечной или бесконечно удаленной). Точка a также может быть конечной или бесконечно удаленной.

Доказательство Гейне ⇒ Коши

Пусть функция имеет в точке предел a согласно первому определению (по Гейне). То есть для любой последовательности , принадлежащей проколотой окрестности точки и имеющей предел
(1) ,
предел последовательности равен a :
(2) .

Покажем, что функция имеет предел в точке по Коши. То есть для любого существует , что для всех .

Допустим противное. Пусть условия (1) и (2) выполнены, но функция не имеет предела по Коши. То есть существует такое , что для любого существует , так что
.

Возьмем , где n - натуральное число. Тогда существует , причем
.
Таким образом мы построили последовательность , сходящуюся к , но предел последовательности не равен a . Это противоречит условию теоремы.

Первая часть доказана.

Доказательство Коши ⇒ Гейне

Пусть функция имеет в точке предел a согласно второму определению (по Коши). То есть для любого существует , что
(3) для всех .

Покажем, что функция имеет предел a в точке по Гейне.
Возьмем произвольное число . Согласно определению Коши, существует число , так что выполняется (3).

Возьмем произвольную последовательность , принадлежащую проколотой окрестности и сходящуюся к . По определению сходящейся последовательности, для любого существует , что
при .
Тогда из (3) следует, что
при .
Поскольку это выполняется для любого , то
.

Теорема доказана.

Использованная литература:
Л.Д. Кудрявцев. Курс математического анализа. Том 1. Москва, 2003.

См. также:

Приводится определение конечного предела последовательности. Рассмотрены связанные с этим свойства и эквивалентное определение. Приводится определение, что точка a не является пределом последовательности. Рассмотрены примеры, в которых доказывается существование предела, используя определение.

Содержание

См. также: Предел последовательности – основные теоремы и свойства
Основные виды неравенств и их свойства

Здесь мы рассмотрим определение конечного предела последовательности. Случай последовательности, сходящейся к бесконечности, рассмотрен на странице «Определение бесконечно большой последовательности» .

Предел последовательности - это такое число a , если для любого положительного числа ε > 0 существует такое натуральное число N ε , зависящее от ε , что для всех натуральных n > N ε выполняется неравенство
| x n - a| < ε .
Здесь x n - элемент последовательности с номером n . Предел последовательности обозначается так:
.
Или при .

Преобразуем неравенство:
;
;
.

ε - окрестность точки a - это открытый интервал (a - ε, a + ε ). Сходящаяся последовательность - это последовательность, у которой существует предел . Также говорят, что последовательность сходится к a . Расходящаяся последовательность - это последовательность, не имеющая предела.

Из определения следует, что, если последовательность имеет предел a , то какую бы ε - окрестностью точки a мы не выбрали, за ее пределами может оказаться, лишь конечное число элементов последовательности, или вообще ни одного (пустое множество). А любая ε - окрестность содержит бесконечное число элементов. В самом деле, задав определенное число ε , мы, тем самым имеем число . Так что все элементы последовательности с номерами , по определению, находятся в ε - окрестностью точки a . Первые элементов могут находиться где угодно. То есть за пределами ε - окрестности может находиться не более элементов - то есть конечное число.

Также заметим, что разность вовсе не обязана монотонно стремиться к нулю, то есть все время убывать. Она может стремиться к нулю не монотонно: может то возрастать, то убывать, имея локальные максимумы. Однако эти максимумы, с ростом n , должны стремиться к нулю (возможно тоже не монотонно).

С помощью логических символов существования и всеобщности, определение предела можно записать следующим образом:
(1) .

Определение, что число a не является пределом

Теперь рассмотрим обратное утверждение, что число a не является пределом последовательности.

Число a не является пределом последовательности , если существует такое , что для любого натурального n существует такое натуральное m > n , что
.

Запишем это утверждение с помощью логических символов.
(2) .

Утверждение, что число a не является пределом последовательности , означает, что
можно выбрать такую ε - окрестность точки a , за пределами которой будет находиться бесконечное число элементов последовательности .

Рассмотрим пример . Пусть задана последовательность с общим элементом
(3)
Любая окрестность точки содержит бесконечное число элементов. Однако эта точка не является пределом последовательности, поскольку и любая окрестность точки также содержит бесконечное число элементов. Возьмем ε - окрестность точки с ε = 1 . Это будет интервал (-1, +1) . Все элементы, кроме первого, с четными n принадлежат этому интервалу. Но все элементы с нечетными n находятся за пределами этого интервала, поскольку они удовлетворяют неравенству x n > 2 . Поскольку число нечетных элементов бесконечно, то за пределами выбранной окрестности будет находиться бесконечное число элементов. Поэтому точка не является пределом последовательности.

Теперь покажем это, строго придерживаясь утверждения (2). Точка не является пределом последовательности (3), поскольку существует такое , так что, для любого натурального n , существует нечетное , для которого выполняется неравенство
.

Также можно показать, что любая точка a не может являться пределом этой последовательности. Мы всегда можем выбрать такую ε - окрестность точки a , которая не содержит либо точку 0, либо точку 2. И тогда за пределами выбранной окрестности будет находиться бесконечное число элементов последовательности.

Эквивалентное определение предела последовательности

Можно дать эквивалентное определение предела последовательности, если расширить понятие ε - окрестности. Мы получим равносильное определение, если в нем, вместо ε - окрестности, будет фигурировать любая окрестность точки a . Окрестности точки - это любой открытый интервал, содержащий эту точку. Математически окрестность точки определяется так: , где ε 1 и ε 2 - произвольные положительные числа.

Тогда эквивалентное определение предела будет следующим.

Предел последовательности - это такое число a , если для любой его окрестности существует такое натуральное число N , так что все элементы последовательности с номерами принадлежат этой окрестности.

Это определение можно представить и в развернутом виде.

Предел последовательности - это такое число a , если для любых положительных чисел и существует такое натуральное число N , зависящее от и , что для всех натуральных выполняются неравенства
.

Доказательство равносильности определений

Докажем, что, представленные выше, два определения предела последовательности равносильны.

    Пусть число a является пределом последовательности согласно первому определению. Это означает, что имеется функция , так что для любого положительного числа ε выполняются неравенства:
    (4) при .

    Покажем, что число a является пределом последовательности и по второму определению. То есть нам нужно показать, что существует такая функция , так что для любых положительных чисел ε 1 и ε 2 выполняются неравенства:
    (5) при .

    Пусть мы имеем два положительных числа: ε 1 и ε 2 . И пусть ε - наименьшее из них: . Тогда ; ; . Используем это в (5):
    .
    Но неравенства выполняются при . Тогда и неравенства (5) выполняются при .

    То есть мы нашли такую функцию , при которой выполняются неравенства (5) для любых положительных чисел ε 1 и ε 2 .
    Первая часть доказана.

    Теперь пусть число a является пределом последовательности согласно второму определению. Это означает, что имеется функция , так что для любых положительных чисел ε 1 и ε 2 выполняются неравенства:
    (5) при .

    Покажем, что число a является пределом последовательности и по первому определению. Для этого нужно положить . Тогда при выполняются неравенства:
    .
    Это соответствует первому определению с .
    Равносильность определений доказана.

Примеры

Пример 1

Доказать, что .


(1) .
В нашем случае ;
.


.
Воспользуемся свойствами неравенств . Тогда если и , то
.


.
Тогда
при .
Это означает, что число является пределом заданной последовательности:
.

Пример 2

С помощью определения предела последовательности доказать, что
.

Выпишем определение предела последовательности:
(1) .
В нашем случае , ;
.

Вводим положительные числа и :
.
Воспользуемся свойствами неравенств . Тогда если и , то
.

То есть, для любого положительного , мы можем взять любое натуральное число, большее или равное :
.
Тогда
при .
.

Пример 3


.

Вводим обозначения , .
Преобразуем разность:
.
Для натуральных n = 1, 2, 3, ... имеем:
.

Выпишем определение предела последовательности:
(1) .
Вводим положительные числа и :
.
Тогда если и , то
.

То есть, для любого положительного , мы можем взять любое натуральное число, большее или равное :
.
При этом
при .
Это означает, что число является пределом последовательности :
.

Пример 4

Используя определение предела последовательности доказать, что
.

Выпишем определение предела последовательности:
(1) .
В нашем случае , ;
.

Вводим положительные числа и :
.
Тогда если и , то
.

То есть, для любого положительного , мы можем взять любое натуральное число, большее или равное :
.
Тогда
при .
Это означает, что число является пределом последовательности :
.

Использованная литература:
Л.Д. Кудрявцев. Курс математического анализа. Том 1. Москва, 2003.
С.М. Никольский. Курс математического анализа. Том 1. Москва, 1983.

См. также:

Определение 1. ПустьЕ – бесконечное множество. Если любая окрестностьсодержит точки множестваЕ , отличные от точкиа , тоа называетсяпредельной точкой множестваЕ .

Определение 2. (Генрих Гейне (1821-1881)). Пусть функция
определена на множествеХ иА называетсяпределом функции
в точке(или при
, если для любой последовательности значений аргумента
, сходящейся к, соответствующая последовательность значений функциисходится к числуА . Пишут:
.

Примеры . 1) Функция
имеет предел, равныйс , в любой точке числовой прямой.

Действительно, для любой точки и любой последовательности значений аргумента
, сходящейся ки состоящей из чисел, отличных от, соответствующая последовательность значений функции имеет вид
, а мы знаем, что эта последовательность сходится кс . Поэтому
.

2) Для функции

.

Это очевидно, так как если
, то и
.

3) Функция Дирихле
не имеет предела ни в одной точке.

Действительно, пусть
и
, причем все– рациональные числа. Тогда
для всехn , поэтому
. Если же
и все– иррациональные числа, то
для всехn , поэтому
. Мы видим, что условия определения 2 не выполняются, поэтому
не существует.

4)
.

Действительно, возьмем произвольную последовательность
, сходящуюся к

числу 2. Тогда . Что и требовалось доказать.

Определение 3. (Коши (1789-1857)). Пусть функция
определена на множествеХ и– предельная точка этого множества. ЧислоА называетсяпределом функции
в точке(или при
, если для любого
найдется
, такое, что для всех значений аргументах , удовлетворяющих неравенству

,

справедливо неравенство

.

Пишут:
.

Определение Коши можно дать и с помощью окрестностей, если заметить, что , а:

пусть функция
определена на множествеХ и– предельная точка этого множества. ЧислоА называется пределом функции
в точке, если для любой-окрестности точкиА
найдется проколотая- окрестность точки
,такая, что
.

Это определение полезно проиллюстрировать рисунком.

Пример 5.
.

Действительно, возьмем
произвольно и найдем
, такое, что для всехх , удовлетворяющих неравенству
выполняется неравенство
. Последнее неравенство равносильно неравенству
, поэтому видим, что достаточно взять
. Утверждение доказано.

Справедлива

Теорема 1. Определения предела функции по Гейне и по Коши эквивалентны.

Доказательство . 1) Пусть
по Коши. Докажем, что это же число является пределом и по Гейне.

Возьмем
произвольно. Согласно определению 3 существует
, такое, что для всех
выполняется неравенство
. Пусть
– произвольная последовательность такая, что
при
. Тогда существует номерN такой, что для всех
выполняется неравенство
, поэтому
для всех
, т.е.

по Гейне.

2) Пусть теперь
по Гейне. Докажем, что
и по Коши.

Предположим противное, т.е. что
по Коши. Тогда существует
такое, что для любого
найдется
,
и
. Рассмотрим последовательность
. Для указанного
и любогоn существует

и
. Это означает, что
, хотя
, т.е. числоА не является пределом
в точкепо Гейне. Получили противоречие, которое и доказывает утверждение. Теорема доказана.

Теорема 2 (о единственности предела). Если существует предел функции в точке, то он единственный.

Доказательство . Если предел определен по Гейне, то его единственность вытекает из единственности предела последовательности. Если предел определен по Коши, то его единственность вытекает из эквивалентности определений предела по Коши и по Гейне. Теорема доказана.

Аналогично критерию Коши для последовательностей имеет место критерий Коши существования предела функции. Прежде чем его сформулировать, дадим

Определение 4. Говорят, что функция
удовлетворяет условию Коши в точке, если для любого
существует

, таких, что
и
, выполняется неравенство
.

Теорема 3 (критерий Коши существования предела). Для того чтобы функция
имела в точкеконечный предел, необходимо и достаточно, чтобы в этой точке функция удовлетворяла условию Коши.

Доказательство .Необходимость . Пусть
. Надо доказать, что
удовлетворяет в точкеусловию Коши.

Возьмем
произвольно и положим
. По определению предела длясуществует
, такое, что для любых значений
, удовлетворяющих неравенствам
и
, выполняются неравенства
и
. Тогда

Необходимость доказана.

Достаточность . Пусть функция
удовлетворяет в точкеусловию Коши. Надо доказать, что она имеет в точкеконечный предел.

Возьмем
произвольно. По определению 4 найдется
, такое, что из неравенств
,
следует, что
– это дано.

Покажем сначала, что для всякой последовательности
, сходящейся к, последовательность
значений функции сходится. Действительно, если
, то, в силу определения предела последовательности, для заданного
найдется номерN , такой, что для любых

и
. Поскольку
в точкеудовлетворяет условию Коши, имеем
. Тогда по критерию Коши для последовательностей последовательность
сходится. Покажем, что все такие последовательности
сходятся к одному и тому же пределу. Предположим противное, т.е. что есть последовательности
и
,
,
, такие, что. Рассмотрим последовательность. Ясно, что она сходится к, поэтому по доказанному выше последовательностьсходится, что невозможно, так как подпоследовательности
и
имеют разные пределыи. Полученное противоречие показывает, что=. Поэтому по определению Гейне функция имеет в точкеконечный предел. Достаточность, а значит и теорема, доказаны.

Бесконечно малые и бесконечно большие функции. Понятие о неопределенностях. Раскрытие простейших неопределенностей. Первый и второй замечательные пределы. Основные эквивалентности. Функции, эквивалентные функциям в окрестности .

Числовой функцией называется соответствие, которое каждому числу х из некоторого заданного множества сопоставляет единственное число y.

СПОСОБЫ ЗАДАНИЯ ФУНКЦИЙ

    Аналитический способ: функция задается с помощью

математической формулы.

    Табличный способ: функция задается с помощью таблицы.

    Описательный способ: функция задается словесным описанием

    Графический способ: функция задается с помощью графика

    Пределы на бесконечности

Пределы функции на бесконечности

Элементарные функции:

1) степенная функция y=x n

2) показательная функция y=a x

3) логарифмическая функция y=log a x

4) тригонометрические функции y=sin x, y=cos x, y=tg x, y=ctg x

5) обратные тригонометрические функции y=arcsin x, y=arccos x, y=arctg x, y=arcctg x.

ПустьиТогда система множеств

является фильтром и обозначается или Пределназывается пределом функции f при x стремящемся к бесконечности.

Опр.1. (по Коши). Пусть задана функция y=f(x): X à Y и точка a является предельной для множества X. Число A называется пределом функции y=f(x) в точке a , если для любого ε > 0 можно указать такое δ > 0, что для всех xX, удовлетворяющим неравенствам 0 < |x-a | < δ, выполняется |f(x) – A | < ε.

Опр.2.(по Гейне). Число A называется пределом функции y=f(x) в точке a , если для любой последовательности {x n }ε X, x n ≠a nN, сходящийся к a , последовательность значений функции {f(x n)} сходится к числу A .

Теорема . Определение предела функции по Коши и по Гейне эквиваленты.

Доказательство . Пусть A=lim f(x) – предел функции y=f(x) по Коши и {x n } X, x n a nN – последовательность, сходящаяся к a , x n à a .

По данному ε > 0 найдем δ > 0 такое, что при 0 < |x-a | < δ, xX имеем |f(x) – A | < ε, а по этому δ найдем номер n δ =n(δ) такой, что при n>n δ имеем 0 < |x n -a | < δ

Но тогда |f(x n) – A | < ε, т.е. доказано, что f(x n)à A .

Пусть теперь число A есть теперь предел функции по Гейне, но A не является пределом по Коши. Тогда найдется ε o > 0 такое, что для всех nN существуют x n X, 0 < |x n -a| < 1/n, для которых |f(x n)-A| >= ε o . Это означает, что найдена последовательность {x n } X, x n ≠a nN, x n à a такая, что последовательность {f(x n)} не сходится к A .

Геометрический смысл предела lim f (x ) функции в точке х 0 таков: если аргументы х будут взяты в ε-окрестности точки х 0 , то соответствующие значения останутся в ε-окрестности точки.

Функции могут быть заданы на интервалах, примыкающих к точке x0 разными формулами, либо не определены на одном из интервалов. Для исследования поведения таких функций удобным является понятие левосторонних и правосторонних пределов.

Пусть функция f определена на интервале (a, x0). Число A называется пределом функции f слева

в точке x0 если0 0 x (a, x0) , x0 - x x0: | f (x) - A |

Предел функции f справа в точке x0 определяется аналогично.

Бесконечно малые функции обладают следующими свойствами:

1) Алгебраическая сумма любого конечного числа бесконечно малых в некоторой точке функций есть функция, бесконечно малая в той же точке.

2) Произведение любого конечного числа бесконечно малых в некоторой точке функций есть функция, бесконечно малая в той же точке.

3) Произведение бесконечно малой в некоторой точке функции на функцию ограниченную есть функция, бесконечно малая в той же точке.

Бесконечно малые в некоторой точке х0 функции a (x) и b (x) называются бесконечно малыми одного порядка ,

Нарушение ограничений, накладываемых на функции при вычислении их пределов, приводит к неопределенностям

Элементарными приемами раскрытия неопределенностей являются:

    сокращение на множитель, создающий неопределенность

    деление числителя и знаменателя на старшую степень аргумента (для отношения многочленов при)

    применение эквивалентных бесконечно малых и бесконечно больших

    использование двух замечательных пределов:

Первый замечательный преде л

Второй замечательный предел

Функции f(x) и g(x) называются эквивалентными при x→ a, если f(x): f(x) = f (x)g(x), где limx→ af (x) = 1.

Иначе говоря функции эквивалентны при x→ a, если предел их отношения при x→ a равен единице. Справедливы следующие соотношения, их еще называют асимптотическими равенствами :

sin x ~ x, x → 0

tg x ~ x, x → 0, arcsin x ~ x, x ® 0, arctg x~ x, x ® 0

e x -1~ x, x→ 0

ln (1+x)~ x, x→ 0

m -1~ mx, x→ 0

Непрерывность функции. Непрерывность элементарных функций. Арифметические операции над непрерывными функциями. Непрерывность сложной функции. Формулировка теорем Больцано-Коши и Вейерштрасса.

Разрывные функции. Классификация точек разрыва. Примеры.

Функция f(x) называется непрерывной в точке a, если

" U(f(a)) $ U(a) (f(U(a))М U(f(a))).

Непрерывность сложной функции

Теорема 2. Если функция u(x) непрерывна в точке х0, а функция f(u) непрерывна в соответствующей точке u0 = f(x0), то сложная функция f(u(x)) непрерывна в точке х0.

Доказательство приведено в книге И.М. Петрушко и Л.А. Кузнецова “Курс высшей математики: Введение в математический анализ. Дифференциальное исчисление.” М.: Изд–во МЭИ, 2000. Стр. 59.

Все элементарные функции непрерывны в каждой точке их областей определения.

Теорема Вейерштрасса

Пусть f - непрерывная функция, определённая на отрезке . Тогда для любого существует такой многочлен p с вещественными коэффициентами, что для любого x из выполнено условие

Теорема Больцано - Коши

Пусть дана непрерывная функция на отрезке Пусть такжеи без ограничения общности предположим, чтоТогда для любогосуществуеттакое, что f(c) = C.

Точка разрыва - значение аргумента, при котором нарушается непрерывность функции (см. Непрерывная функция). В простейших случаях нарушение непрерывности в некоторой точке а происходит так, что существуют пределы

при стремлении x к а справа и слева, но хотя бы один из этих пределов отличен от f (a). В этом случае а называют Точкой разрыва 1-го рода . Если при этом f (a + 0) = f (a -0), то разрыв называется устранимым, так как функция f (x) становится непрерывной в точке а, если положить f (a)= f(a+0)=f(a-0).

Разрывные функции, функции, имеющие разрыв в некоторых точках (см. Разрыва точка). Обычно у функций, встречающихся в математике, точки разрыва изолированы, но существуют функции, для которых все точки являются точками разрыва, например функция Дирихле: f (x) = 0, если х рационально, и f (x) = 1, если х иррационально. Предел всюду сходящейся последовательности непрерывных функций может быть Р. ф. Такие Р. ф. называются функциями первого класса по Бэру.

Производная, ее геометрический и физический смысл. Правила дифференцирования (производная суммы, произведения, частного двух функций; производная сложной функции).

Производная тригонометрических функций.

Производная обратной функции. Производная обратных тригонометрических функций.

Производная логарифмической функции.

Понятие о логарифмическом дифференцировании. Производная степенно-показательной функции. Производная степенной функции. Производная показательной функции. Производная гиперболических функций.

Производная функции, заданной параметрически.

Производная неявной функции.

Производной функции f(x) (f"(x0)) в точке x0 называется число, к которому стремится разностное отношение , стремящемся к нулю.

Геометрический смысл производной . Производная в точке x0 равна угловому коэффициенту касательной к графику функции y=f(x) в этой точке.

Уравнение касательной к графику функции y=f(x) в точке x0:

Физический смысл производной.

Если точка движется вдоль оси х и ее координата изменяется по закону x(t), то мгновенная скорость точки:

Логарифмическое дифференцирование

Если требуется найти из уравнения, то можно:

а) логарифмировать обе части уравнения

б) дифференцировать обе части полученного равенства, где есть сложная функция от х,

.

в) заменить его выражением через х

Дифференцирование неявных функций

Пусть уравнение определяеткак неявную функцию от х.

а) продифференцируем по х обе части уравнения , получим уравнение первой степени относительно;

б) из полученного уравнения выразим .

Дифференцирование функций, заданных параметрически

Пусть функция задана параметрическими уравнениями ,

Тогда , или

Дифференциал. Геометрический смысл дифференциала. Применение дифференциала в приближенных вычислениях. Инвариантность формы первого дифференциала. Критерий дифференцируемости функции.

Производные и дифференциалы высших порядков.

Дифференциал (от лат. differentia - разность, различие) в математике, главная линейная часть приращения функции. Если функция y = f (x) одного переменного х имеет при х = х0 производную, то приращение Dy = f (x0 + Dx) - f (x0) функции f (x) можно представить в виде Dy = f" (x0) Dx + R,

где член R бесконечно мал по сравнению с Dх. Первый член dy = f" (x0) Dх в этом разложении и называется дифференциалом функции f (x) в точке x0.

ДИФФЕРЕНЦИАЛЫ ВЫСШИХ ПОРЯДКОВ

Пусть имеем функцию y=f(x), где x – независимая переменная. Тогда дифференциал этой функции dy=f"(x)dx также зависит от переменной x, причем от x зависит только первый сомножитель f"(x) , а dx=Δx от x не зависит (приращение в данной точке x можно выбирать независимо от этой точки). Рассматривая dy как функцию x, мы можем найти дифференциал этой функции.

Дифференциал от дифференциала данной функции y=f(x) называется вторым дифференциалом или дифференциалом второго порядка этой функции и обозначается d 2 y: d(dy)=d 2 y.

Найдем выражение второго дифференциала. Т.к. dx от x не зависит, то при нахождении производной его можно считать постоянным, поэтому

d 2 y = d(dy) = d = "dx = f ""(x)dx·dx = f ""(x)(dx) 2 .

Принято записывать (dx) 2 = dx 2 . Итак, d 2 у= f""(x)dx 2 .

Аналогично третьим дифференциалом или дифференциалом третьего порядка функции называется дифференциал от ее второго дифференциала:

d 3 y=d(d 2 y)="dx=f """(x)dx 3 .

Вообще дифференциалом n-го порядка называется первый дифференциал от дифференциала (n – 1)-го порядка: d n (y)=d(d n -1y)d n y = f (n)(x)dx n

Отсюда, пользуясь дифференциалами различных порядков, производную любого порядка можно представить как отношение дифференциалов соответствующего порядка:

ПРИМЕНЕНИЕ ДИФФЕРЕНЦИАЛА К ПРИБЛИЖЕННЫМ ВЫЧИСЛЕНИЯМ

Пусть нам известно значение функции y0=f(x0) и ее производной y0" = f "(x0) в точке x0. Покажем, как найти значение функции в некоторой близкой точке x.

Как мы уже выяснили приращение функции Δy можно представить в виде суммы Δy=dy+α·Δx, т.е. приращение функции отличается от дифференциала на величину бесконечно малую. Поэтому, пренебрегая при малых Δx вторым слагаемым в приближенных вычислениях, иногда пользуются приближенным равенством Δy≈dy или Δy≈f"(x0)·Δx.

Т.к., по определению, Δy = f(x) – f(x0), то f(x) – f(x0)≈f"(x0)·Δx.

Откуда f(x) ≈ f(x0) + f"(x0)·Δx

Инвариантная форма первого дифференциала.

Доказательство:

1)

Основные теоремы о дифференцируемых функциях. Связь между непрерывностью и дифференцируемостью функции. Теорема Ферма. Теоремы Ролля, Лагранжа, Коши и их следствия. Геометрический смысл теорем Ферма, Ролля и Лагранжа.

Доказывая свойства предела функции, мы убедились, что от проколотых окрестностей, в которых были определены наши функции и которые возникали в процессе доказательств, кроме свойств указанных во введении к предыдущему пункту 2, действительно ничего не потребовалось. Это обстоятельство служит оправданием для выделения следующего математического объекта.

а. База; определение и основные примеры

Определение 11. Совокупность В подмножеств множества X будем называть базой в множестве X, если выполнены два условия:

Иными словами, элементы совокупности В суть непустые множества и в пересечении любых двух из них содержится некоторый элемент из той же совокупности.

Укажем некоторые наиболее употребительные в анализе базы.

Если то вместо пишут и говорят, что х стремится к а справа или со стороны больших значений (соответственно, слева или со стороны меньших значений). При принята краткая запись вместо

Запись будет употребляться вместо Она означает, что а; стремится по множеству Е к а, оставаясь больше (меньше), чем а.

то вместо пишут и говорят, что х стремится к плюс бесконечности (соответственно, к минус бесконечности).

Запись будет употребляться вместо

При вместо мы (если это не ведет к недоразумению) будем, как это принято в теории предела последовательности, писать

Заметим, что все перечисленные базы обладают той особенностью, что пересечение любых двух элементов базы само является элементом этой базы, а не только содержит некоторый элемент базы. С другими базами мы встретимся при изучении функций, заданных не на числовой оси.

Отметим также, что используемый здесь термин «база» есть краткое обозначение того, что в математике называется «базисом фильтра», а введенный ниже предел по базе есть наиболее существенная для анализа часть созданного современным французским математиком А. Картаном понятия предела по фильтру

b. Предел функции по базе

Определение 12. Пусть - функция на множестве X; В - база в X. Число называется пределом функции по базе В, если для любой окрестности точки А найдется элемент базы, образ которого содержится в окрестности

Если А - предел функции по базе В, то пишут

Повторим определение предела по базе в логической символике:

Поскольку мы сейчас рассматриваем функции с числовыми значениями, полезно иметь в виду и следующую форму этого основного определения:

В этой формулировке вместо произвольной окрестности V (А) берется симметричная (относительно точки А) окрестность (е-окрестность). Эквивалентность этих определений для вещественнозначных функций вытекает из того, что, как уже говорилось, в любой окрестности точки содержится некоторая симметричная окрестность этой же точки (проведите доказательство полностью!).

Мы дали общее определение предела функции по базе. Выше были рассмотрены примеры наиболее употребительных в анализе баз. В конкретной задаче, где появляется та или иная из этих баз, необходимо уметь расшифровать общее определение и записать его для конкретной базы.

Рассматривая примеры баз, мы, в частности, ввели понятие окрестности бесконечности. Если использовать это понятие, то в соответствии с общим определением предела разумно принять следующие соглашения:

или, что то же самое,

Обычно под подразумевают малую величину. В приведенных определениях это, разумеется, не так. В соответствии с принятыми соглашениями, например, можем записать

Для того чтобы можно было считать доказанными и в общем случае предела по произвольной базе все те теоремы о пределах, которые мы доказали в пункте 2 для специальной базы , необходимо дать соответствующие определения: финально постоянной, финально ограниченной и бесконечно малой при данной базе функций.

Определение 13. Функция называется финально постоянной при базе В, если существуют число и такой элемент базы, в любой точке которого

Определение 14. Функция называется ограниченной при базе В или финально ограниченной при базе В, если существуют число с и такой элемент базы, в любой точке которого

Определение 15. Функция называется бесконечно малой при базе В, если

После этих определений и основного наблюдения о том, что для доказательства теорем о пределах нужны только свойства базы, можно считать, что все свойства предела, установленные в пункте 2, справедливы для пределов по любой базе.

В частности, мы можем теперь говорить о пределе функции при или при или при

Кроме того, мы обеспечили себе возможность применения теории пределов и в том случае, когда функции будут определены не на числовых множествах; в дальнейшем это окажется особенно ценным. К примеру, длина кривой есть числовая функция, определенная на некотором классе кривых. Если мы знаем эту функцию на ломаных, то потом предельным переходом определяем ее для более сложных кривых, например для окружности.

В данный же момент основная польза от сделанного наблюдения и введенного в связи с ним понятия базы состоит в том, что они избавляют нас от проверок и формальных доказательств теорем о пределах для каждого конкретного вида предельных переходов или, в нашей нынешней терминологии, для каждого конкретного вида баз.

Для того чтобы окончательно освоиться с понятием предела по произвольной базе, доказательства дальнейших свойств предела функции мы проведем в общем виде.